Corrigés des TD du chapitre 3

Exercice 1

Pour tout $x \in E$, $||f(x)|| = \left\| \frac{1}{1 + ||x||} x \right\| = \frac{||x||}{1 + ||x||} < 1$, donc $f(x) \in B(0,1)$ et ainsi, f est à images dans B(0,1).

Par ailleurs, l'application $x \mapsto ||x||$ est continue sur E et à valeurs dans \mathbb{R}_+ et la fonction $t \mapsto \frac{1}{1+t}$ est continue sur \mathbb{R}_+ , donc $x \mapsto \frac{1}{1+||x||}$ est continue sur E en tant que composée d'applications continues.

Enfin, $x \mapsto x$ est continue sur E, donc f est continue sur E en tant que produit de fonctions continues (l'une scalaire, l'autre vectorielle).

Soit $y \in B(0,1)$. On a:

$$f(x) = y \iff \frac{1}{1 + \|x\|} x = y \iff \begin{cases} \frac{\|x\|}{1 + \|x\|} = \|y\| < 1 \\ x = (1 + \|x\|) y \end{cases} \iff \begin{cases} \|x\| = \frac{\|y\|}{1 - \|y\|} \\ x = (1 + \|x\|) y \end{cases} \iff x = \frac{1}{1 - \|y\|} y$$

Ceci prouve que f est bijective de réciproque $y \mapsto \frac{1}{1-\|y\|}y$, définie sur B(0,1).

La fonction $t \mapsto \frac{1}{1-t}$ est continue sur [0,1[, donc on prouve comme plus haut que $y \mapsto \frac{1}{1-\|y\|}y$ est continue sur B(0,1).

Finalement:

L'application f est continue sur E, bijective de E dans B(0,1) et f^{-1} est continue sur B(0,1).

Exercice 2

L'application ϕ est linéaire (par linéarité de l'intégrale). Soient $f,g\in E$. On a :

$$|\phi(f) - \phi(g)| = |\phi(f - g)| = |\int_0^1 (f(t) - g(t)) dt| \le \int_0^1 |f(t) - g(t)| dt = ||f - g||.$$

Donc, pour tout $(f,g) \in E^2$, $|\phi(f) - \phi(g)| \le ||f - g||$, autrement dit, ϕ est 1- lipschitzienne, donc :

 ϕ est continue sur E.

Exercice 3

1) Les fonctions $(x, y) \mapsto x^2 + y^2$ et $(x, y) \mapsto x^2$ sont polynomiales en x et y, donc continue sur \mathbb{R}^2 , et à images dans \mathbb{R}_+ . De plus, $x^2 + y^2 = 0$ si et seulement si (x, y) = (0, 0), donc $(x, y) \mapsto x^2 + y^2$ est continue et strictement positive sur Ω .

Comme la fonction ln est continue sur \mathbb{R}_+^* , f est continue sur Ω en tant que composée de fonctions continues et g est continue sur Ω en tant que quotient de telles fonctions.

Finalement:

Les fonctions f et g sont continues sur Ω .

2) Pour tout $x \in \mathbb{R} \setminus \{0\}$, on a $f(x,0) = \ln(x^2)$ donc $\lim_{x \to 0} f(x,0) = +\infty$. Ainsi, f n'admet pas de limite quand en (0,0) et:

La fonction f n'est pas prolongeable par continuité en (0,0).

Pour tout $x \in \mathbb{R} \setminus \{0\}$, on a g(x,0) = 1 donc $\lim_{x \to 0} g(x,0) = 1$ et pour tout $y \in \mathbb{R} \setminus \{0\}$, on a g(0,y) = 0 donc $\lim_{x \to 0} g(0,y) = 0 \neq 1$. Ainsi, g n'admet pas de limite quand en (0,0) et :

La fonction g n'est pas prolongeable par continuité en (0,0).

Exercice 4

1) Supposons qu'il existe $(a,b) \in F^2$ tel que f(a) = a et f(b) = b.

Comme f est λ -lipschitzienne pour la norme infinie, on a : $||f(a) - f(b)||_{\infty} \le \lambda ||a - b||_{\infty}$, soit :

$$||a-b||_{\infty} \leq \lambda ||a-b||_{\infty}$$
.

Or, si $||a-b||_{\infty} \neq 0$, on obtient $1 \leq \lambda$, ce qui est absurde car $\lambda \in]0,1[$, donc $||a-b||_{\infty} = 0$, soit a = b. Ainsi:

Sif possède un point fixe alors il est unique.

2) Prouvons les deux résultats par récurrence sur $n \in \mathbb{N}$.

Pour n=0, on a $x_0 \in F$ par hypothèse et $\|x_1-x_0\|_{\infty}=\lambda^0\|x_1-x_0\|_{\infty}$, donc la propriété est vraie au rang 0.

Supposons la propriété vraie à un rang $n \in \mathbb{N}$. On a alors :

- $x_n \in F \implies f(x_n) \in F (\operatorname{car} f(F) \subset F) \implies x_{n+1} \in F$.
- On a $||x_{n+1} x_n||_{\infty} \le \lambda^n ||x_1 x_0||_{\infty}$ et:

$$\|x_{n+2} - x_{n+1}\|_{\infty} = \|f(x_{n+1}) - f(x_n)\|_{\infty} \le \lambda \|x_{n+1} - x_n\|_{\infty} \le \lambda (\lambda^n \|x_1 - x_0\|_{\infty}) = \lambda^{n+1} \|x_1 - x_0\|_{\infty}.$$

Ainsi, la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}$, soit :

$$x_n \in F \text{ et } \|x_{n+1} - x_n\|_{\infty} \le \lambda^n \|x_1 - x_0\|_{\infty}.$$

3) Soit $i \in [1; p]$. On a, pour tout $n \in \mathbb{N}$:

$$|x_{i,n+1} - x_{i,n}| \le ||x_{n+1} - x_n||_{\infty} \le \lambda^n ||x_1 - x_0||_{\infty}.$$

Or, $\lambda \in]0,1[$, donc la série géométrique $\sum \lambda^n ||x_1 - x_0||_{\infty}$ est convergente et par comparaison :

La série $\sum (x_{i,n+1} - x_{i,n})$ est absolument convergente.

4) Pour tout $i \in [1; p]$, la série $\sum (x_{i,n+1} - x_{i,n})$ est absolument convergente, donc elle est convergente. Ceci implique que la suite $(x_{i,n})_{n \in \mathbb{N}}$ converge. La suite de vecteurs $(x_n)_{n \in \mathbb{N}}$ converge coordonnée par coordonnée, donc :

La suite $(x_n)_{n\in\mathbb{N}}$ converge vers un vecteur a.

On a vu que pour tout $i \in [1; p]$ et pour tout $n \in \mathbb{N}$:

$$|x_{i,n+1} - x_{i,n}| \le \lambda^n ||x_1 - x_0||_{\infty} \iff -\lambda^n ||x_1 - x_0||_{\infty} \le x_{i,n+1} - x_{i,n} \le \lambda^n ||x_1 - x_0||_{\infty}.$$

Comme les séries $\sum (x_{i,n+1} - x_{i,n})$ et $\sum \lambda^n$ convergent, on a pour tout $i \in [1; p]$ et pour tout $n \in \mathbb{N}$:

$$-\|x_1 - x_0\|_{\infty} \sum_{k=n}^{+\infty} \lambda^k \le \sum_{k=n}^{+\infty} (x_{i,k+1} - x_{i,k}) \le \|x_1 - x_0\|_{\infty} \sum_{k=n}^{+\infty} \lambda^k.$$

Si pour tout $i \in [1; p]$, $(x_{i,n})_{n \in \mathbb{N}}$ converge vers a_i , on a $\sum_{k=n}^{+\infty} (x_{i,k+1} - x_{i,k}) = a_i - x_{i,n}.$

Et comme $\sum_{k=n}^{+\infty} \lambda^k = \frac{\lambda^n}{1-\lambda}$, on obtient pour tout $i \in [1; p]$ et pour tout $n \in \mathbb{N}$:

$$-\|x_{1}-x_{0}\|_{\infty} \frac{\lambda^{n}}{1-\lambda} \leq a_{i}-x_{i,n} \leq \|x_{1}-x_{0}\|_{\infty} \frac{\lambda^{n}}{1-\lambda} \iff |x_{i,n}-a_{i}| \leq \frac{\|x_{1}-x_{0}\|_{\infty}}{1-\lambda} \lambda^{n}.$$

L'inégalité ci-dessus étant vraie pour toutes les composantes de $x_n - a$, on obtient, pour tout $n \in \mathbb{N}$:

$$\left\| x_n - a \right\|_{\infty} \le \frac{\left\| x_1 - x_0 \right\|_{\infty}}{1 - \lambda} \lambda^n$$

5) La suite $(x_n)_{n\in\mathbb{N}}$ est une suite convergente de F, qui est fermé, donc sa limite a appartient à F.

On a pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$, donc $\lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} f(x_n)$.

Or, $\lim_{n \to +\infty} x_{n+1} = a$ et f est continue sur F (car lipschitzienne), donc $\lim_{n \to +\infty} f(x_n) = f(\lim_{n \to +\infty} x_n) = f(a)$.

Ainsi:

$$f(a) = a$$

Nous venons donc de trouver une vecteur a de F tel que f(a) = a, autrement f admet un point fixe dans F. Finalement, avec le résultat de la première question, on peut conclure que :

f possède un unique point fixe dans F.

Exercice 5

1) Commençons par reformuler la continuité de f sur E. f est continue sur E si et seulement si :

$$\forall a \in E, \ \forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists \alpha \in \mathbb{R}_{+}^{*}, \ \forall x \in E, \ \|x - a\| \le \alpha \implies \|f(x) - f(a)\| \le \varepsilon.$$

On peut rendre stricte les inégalités sans altérer l'équivalence :

$$\forall a \in E, \ \forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists \alpha \in \mathbb{R}_{+}^{*}, \ \forall x \in E, \ \|x - a\| < \alpha \implies \|f(x) - f(a)\| < \varepsilon.$$

Ceci se reformule alors en:

$$\left[\forall a \in E, \ \forall \, \epsilon \in \mathbb{R}_{+}^{*}, \ \exists \, \alpha \in \mathbb{R}_{+}^{*}, \ x \in B(a, \alpha) \Rightarrow f(x) \in B(f(a), \epsilon) \right]$$

$$\Leftrightarrow \left[\forall \, a \in E, \ \forall \, \epsilon \in \mathbb{R}_{+}^{*}, \ \exists \, \alpha \in \mathbb{R}_{+}^{*}, \ x \in B(a, \alpha) \Rightarrow x \in f^{-1}(B(f(a), \epsilon)) \right]$$

$$\Leftrightarrow \left[\forall \, a \in E, \ \forall \, \epsilon \in \mathbb{R}_{+}^{*}, \ \exists \, \alpha \in \mathbb{R}_{+}^{*}, \ B(a, \alpha) \subset f^{-1}(B(f(a), \epsilon)) \right]$$

Ainsi:

$$f \text{ est continue sur } E \iff \left[\forall a \in E, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \alpha \in \mathbb{R}_+^*, \ B(a,\alpha) \subset f^{-1} \big(B\big(f(a),\varepsilon\big) \big) \right].$$

 (\Rightarrow) Supposons f continue sur E.

Soit O une partie ouverte de F. Si $f^{-1}(O)$ est vide alors elle est ouverte. Sinon, pour tout $a \in f^{-1}(O)$, on a $f(a) \in O$. Comme O est ouverte, il existe $\varepsilon \in \mathbb{R}_+^*$ tel que $B(f(a), \varepsilon) \subset O$ et donc, $f^{-1}(B(f(a), \varepsilon)) \subset f^{-1}(O)$.

Or, d'après ce qui précède, il existe $\alpha \in \mathbb{R}_+^*$ tel que $B(a,\alpha) \subset f^{-1}(B(f(a),\epsilon))$, donc $B(a,\alpha) \subset f^{-1}(O)$.

Ainsi, pour tout $a \in f^{-1}(O)$, il existe $\alpha \in \mathbb{R}_+^*$ tel que $B(a,\alpha) \subset f^{-1}(O)$, ce qui prouve que $f^{-1}(O)$ est ouverte.

 (\Leftarrow) Supposons que l'image réciproque de toute partie ouverte de F est une partie ouverte de E.

Soient $a \in E$ et $\varepsilon \in \mathbb{R}^*$.

Comme $B(f(a), \varepsilon)$ est une partie ouverte de F, $f^{-1}(B(f(a), \varepsilon))$ est une partie ouverte de E.

Or,
$$f(a) \in B(f(a), \epsilon)$$
, donc $a \in f^{-1}(B(f(a), \epsilon))$ et ainsi, il existe $\alpha \in \mathbb{R}_+^*$ tel que $B(a, \alpha) \subset f^{-1}(B(f(a), \epsilon))$.

Ainsi, pour tout $a \in E$ et pour tout $\epsilon \in \mathbb{R}_+^*$, il existe $\alpha \in \mathbb{R}_+^*$ tel que $B(a, \alpha) \subset f^{-1}(B(f(a), \epsilon))$, ce qui prouve que f est continue sur E.

Finalement, on a bien:

f est continue sur E si et seulement si l'image réciproque de tout ouvert de F est un ouvert de E.

2) (\Rightarrow) Supposons f continue sur E.

Soit A une partie fermée de F. Si $f^{-1}(A)$ est vide alors elle est fermée. Sinon, soit $(a_n)_{n\in\mathbb{N}}$ une suite de $f^{-1}(A)$ convergeant vers $a\in E$. On a $a_n\to a$ et f continue en a, donc $f(a_n)\to f(a)$.

Or, pour tout $n \in \mathbb{N}$, $a_n \in f^{-1}(A)$, donc $f(a_n) \in A$ et comme A est fermée et $f(a_n) \to f(a)$, on a $f(a) \in A$.

Ainsi, $a \in f^{-1}(A)$ et donc toute suite convergente de $f^{-1}(A)$ converge dans $f^{-1}(A)$, ce qui prouve que $f^{-1}(A)$ est fermée.

 (\Leftarrow) Supposons que l'image réciproque de toute partie fermée de F est une partie fermée de E.

Soit A une partie ouverte de F. On a $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$. En effet :

$$x \in f^{-1}(F \setminus A) \iff f(x) \in F \setminus A \iff f(x) \notin A \iff x \notin f^{-1}(A) \iff E \setminus f^{-1}(A)$$
.

Comme A est ouverte, $F \setminus A$ est fermée, donc $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$ est fermée, ce qui prouve que $f^{-1}(A)$ est ouverte. Ainsi, l'image réciproque de toute partie ouverte de F est une partie ouverte de E, donc f est continue sur E d'après la question précédente.

Finalement, on a bien:

f est continue sur E si et seulement si l'image réciproque de tout fermé de F est un fermé de E.

3) Posons $f(x) = \frac{1}{1+x^2}$. La fonction f est définie et continue (car rationnelle) sur \mathbb{R} , à valeurs dans \mathbb{R} .

On a $f(\mathbb{R}) = [0,1[$ qui n'est ni ouvert, ni fermé. Or, \mathbb{R} est un fermé et un ouvert de \mathbb{R} , donc :

L'image d'un ouvert (resp. fermé) par une application continue n'est pas forcément ouverte (resp. fermée).

Exercice 6

Pour toute matrice M de $\mathcal{M}_n(\mathbb{K})$, det M est polynomiale (et même affine) en chacun des coefficients de M, donc l'application det : $M \mapsto \det M$ est continue sur $\mathcal{M}_n(\mathbb{K})$, à valeurs dans \mathbb{K} .

Or,
$$\mathcal{M}_n(\mathbb{K}) \setminus GL_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}), \det M = 0 \} = \det^{-1} (\{0\}).$$

Comme $\{0\}$ est fermé dans \mathbb{K} , $\mathcal{M}_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$ est l'image réciproque d'une partie fermée de \mathbb{K} par une application continue, donc est fermé dans $\mathcal{M}_n(\mathbb{K})$, d'après l'exercice précédent.

Finalement, comme $\mathcal{M}_n(\mathbb{K}) \backslash GL_n(\mathbb{K})$ est fermé :

$$GL_n(\mathbb{K})$$
 est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

On veut montrer que $\overline{GL_n(\mathbb{K})} = \mathcal{M}_n(\mathbb{K})$, donc que $\mathcal{M}_n(\mathbb{K}) \subset \overline{GL_n(\mathbb{K})}$, autrement dit que toute matrice de $\mathcal{M}_n(\mathbb{K})$ est limite d'une suite de matrices de $GL_n(\mathbb{K})$.

Soit $M \in \mathcal{M}_n(\mathbb{K})$ de rang $r \in [0, n]$. Il existe deux matrices inversibles P et Q telles que M = PJQ où :

$$J = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r} \end{pmatrix}.$$

Posons alors pour tout $k \in \mathbb{N}^*$, $M_k = PJ_kQ$ avec $J_k = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & \frac{1}{k}I_{n-r} \end{pmatrix}$.

On a immédiatement $J_k \to J$ quand $k \to +\infty$ (car $\|J_k - J\|_{\infty} = \frac{1}{k}$) et, comme l'application $X \mapsto PXQ$ est continue sur $\mathcal{M}_n(\mathbb{K})$, on a : $M_k \to PJQ = M$.

Enfin, pour tout $k \in \mathbb{N}^*$, $\det J = \frac{1}{k^{n-r}} \neq 0$ donc $\det M_k = \det P \times \det J_k \times \det Q \neq 0$ et $M_k \in GL_n(\mathbb{K})$.

Finalement, on a trouvé une suite $(M_k)_{k \in \mathbb{N}^*}$ de matrices inversibles qui converge vers M, donc $M \in \overline{GL_n(\mathbb{K})}$.

Ceci prouve que:

$$\overline{GL_n(\mathbb{K})} = \mathcal{M}_n(\mathbb{K})$$

Exercice 7

D'après l'exercice 7 du TD sur les espaces vectoriels normés, $\mathcal{Y}_n(\mathbb{R})$ est une partie fermée, bornée de $\mathcal{M}_n(\mathbb{R})$ (pour n'importe quelle norme). De plus, l'application $M \mapsto \|M - B\|$ est continue sur $\mathcal{M}_n(\mathbb{R})$, donc elle admet un minimum sur $\mathcal{Y}_n(\mathbb{R})$, atteint en $A \in \mathcal{Y}_n(\mathbb{R})$. Comme $\|A - B\|$ est le minimum de $M \mapsto \|M - B\|$ sur $\mathcal{Y}_n(\mathbb{R})$, on a alors immédiatement $\|A - B\| \le \|M - B\|$ pour tout $M \in \mathcal{Y}_n(\mathbb{R})$.

Supposons qu'il existe une deuxième matrice A' de $\mathcal{Y}_n(\mathbb{R})$ telle que pour tout $M \in \mathcal{Y}_n(\mathbb{R})$,

Comme A et A' appartiennent toutes deux à $\mathcal{Y}_n(\mathbb{R})$, on a $||A'-B|| \le ||A-B||$ et $||A-B|| \le ||A'-B||$, donc:

$$||A'-B|| = ||A-B||.$$

Toujours d'après l'exercice 7 du TD sur les espaces vectoriels normés, $\mathcal{Y}_n(\mathbb{R})$ est une partie convexe de $\mathcal{M}_n(\mathbb{R})$, donc pour tout $t \in [0,1]$, $tA + (1-t)A' \in \mathcal{Y}_n(\mathbb{R})$ et $||A - B|| \le ||tA + (1-t)A' - B||$. Or :

$$||tA + (1-t)A' - B|| = ||t(A-B) + (1-t)(A'-B)|| \le t ||A-B|| + (1-t)||A'-B|| = ||A-B||.$$

Ainsi:

$$||tA + (1-t)A' - B|| = ||A - B||.$$

Or, ici | . | est une norme euclidienne donc dérive d'un produit scalaire et :

$$||tA + (1-t)A' - B||^2 = ||t(A - A') + A' - B||^2 = t^2 ||A - A'||^2 + 2t(A - A' | A' - B) + ||A' - B||^2.$$

Avec ||A' - B|| = ||A - B||, on obtient, pour tout $t \in [0,1]$:

$$t^{2} ||A - A'||^{2} + 2t(A - A' | A' - B) = 0.$$

Or, l'application polynôme $t \mapsto t^2 \|A - A'\|^2 + 2t(A - A' \mid A' - B) = 0$ est nulle sur [0,1] si et seulement si ses coefficients sont nuls, donc $\|A - A'\|^2 = 0$, ce qui entraine immédiatement A = A'.

Finalement:

Il existe une unique matrice $A \in \mathcal{Y}_n(\mathbb{R})$ telle que pour tout $M \in \mathcal{Y}_n(\mathbb{R})$, $||A - B|| \le ||M - B||$.

oxdots

Exercice 8

On veut montrer : $\exists k \in \mathbb{R}$, $\forall x \in E$, $N(f(x)) \le k ||x||$.

Raisonnons par l'absurde en supposant le contraire, c'est-à-dire : $\forall k \in \mathbb{R}$, $\exists x \in E$, N(f(x)) > k ||x||.

En particulier ceci est vrai pour k entier, donc : $\forall n \in \mathbb{N}$, $\exists x_n \in E$, $N(f(x_n)) > n ||x_n||$.

Comme f est linéaire, si $x_n = 0$, on a $f(x_n) = 0$ et donc $N(f(x_n)) = n ||x_n|| = 0$, qui est exclu, donc $x_n \neq 0$ pour tout $n \in \mathbb{N}$ et on peut poser $u_n = \frac{1}{\|x_n\|} x_n$. Alors pour tout $n \in \mathbb{N}$, $\|u_n\| = 1$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est bornée et :

$$N(f(u_n)) = N\left(f\left(\frac{1}{\|x_n\|}x_n\right)\right) = N\left(\frac{1}{\|x_n\|}f(x_n)\right) = \frac{N(f(x_n))}{\|x_n\|} > n.$$

Donc, $(u_n)_{n\in\mathbb{N}}$ est bornée mais pas $(f(u_n))_{n\in\mathbb{N}}$, ce qui contredit les hypothèses.

Ainsi, il existe bien un réel k tel que pour tout $x \in E$, $N(f(x)) \le k ||x||$. Ceci veut dire que f est lipchitzienne et donc:

f est continue sur E.

Exercice 9

1) En assimilant $\mathcal{M}_1(\mathbb{C})$ et \mathbb{C} , on a $E_p=\left\{z\in\mathbb{C},P(z)=0\right\}$, autrement dit :

Pour n=1, E_p est l'ensemble des racines de P.

Dans ce cas, E_p est fini (de cardinal au plus le degré de P) et donc :

Pour n=1, tous les éléments de E_p sont isolés.

2) Si une telle boule $B_0 = B(0_n, r)$ avec r > 0 existe, alors pour tout $H \in B_0$, $I_n + H$ est inversible, donc $\det(I_n + H) \neq 0$. Or, $\det I_n = 1 \neq 0$ et $M \mapsto \det M$ est continue sur $\mathcal{M}_n(\mathbb{C})$, donc pour tout réel $\varepsilon > 0$, il existe un réel r > 0 tel que pour tout $M \in \mathcal{M}_n(\mathbb{C})$ telle que $\|M - I_n\| < r$, on a $-\varepsilon < \det M - \det I_n < \varepsilon$.

En particulier pour $\varepsilon=1$, on a pour tout $H=M-I_n\in\mathcal{M}_n(\mathbb{C})$ telle que $\|H\|< r$, $0<\det(I_n+H)$, ce qui implique que pour tout $H\in B_0=B(0_n,r)$, $\det(I_n+H)\neq 0$ et ainsi :

Il existe une boule ouverte $B_0 = B(0_n, r)$ telle que $I_n + H$ soit inversible pour tout $H \in B_0$.

3) Si on pose pour tout $k \in \mathbb{N}$, $M_k = \lambda I_n + \frac{1}{k+1} E_{1,n}$ (où $E_{1,n}$ est la matrice de la base canonique dans laquelle le 1 est à la fin de la première ligne. On a $E_{1,n}^2 = 0_n$, donc pour tout $k \in \mathbb{N}$, $(M_k - \lambda I_n)^2 = \frac{1}{(k+1)^2} E_{1,n}^2 = 0_n$ et :

$$||M_k - \lambda I_n|| = \left| \frac{1}{k+1} E_{1,n} \right|| = \frac{1}{k+1} ||E_{1,n}|| \xrightarrow{k \to +\infty} 0.$$

Donc, $(M_k)_{k\in\mathbb{N}}$ converge vers λI_n . Ainsi:

La suite $(M_k)_{k \in \mathbb{N}} = \left(\lambda I_n + \frac{1}{k+1} E_{1,n}\right)_{k \in \mathbb{N}}$ converge vers λI_n et vérifie $(M_k - \lambda I_n)^2 = 0_n$, pour tout $k \in \mathbb{N}$.

4) Remarquons que si $Q \in GL_n(\mathbb{C})$, on a $P(QMQ^{-1}) = QP(M)Q^{-1} = Q0_nQ^{-1} = 0_n$, donc $QMQ^{-1} \in E_p$.

Comme M est un point isolé de E_p , il existe R > 0 tel que $B(M, R) \cap E_p = \{M\}$.

Soit $H \in B_0 = B(0_n, r)$ (de la question 2). On a alors $I_n + H \in GL_n(\mathbb{C})$, donc $(I_n + H)M(I_n + H)^{-1} \in E_p$.

L'application $\Psi: H \mapsto (I_n + H)M(I_n + H)^{-1}$ est rationnelle en les coefficients de H, donc continue sur B_0 . Comme $\Psi(0_n) = M$, il existe r' > 0 tel que $r' \le r$ et pour tout $H \in B_0$ telle que $\|H\| < r'$:

$$||(I_n + H)M(I_n + H)^{-1} - M|| < R.$$

Autrement dit, pour tout $H \in B_1 = B(0_n, r')$, $(I_n + H)M(I_n + H)^{-1} \in B(M, R)$.

Finalement, pour tout $H \in B_1$, on a $(I_n + H)M(I_n + H)^{-1} \in B(M, R)$ et $(I_n + H)M(I_n + H)^{-1} \in E_p$, donc:

$$(I_n + H)M(I_n + H)^{-1} \in B(M, R) \cap E_p = \{M\} \implies (I_n + H)M(I_n + H)^{-1} = M.$$

Ainsi:

Il existe une boule ouverte $B_1 = B(0_n, r')$ telle que pour tout $H \in B_1$, $(I_n + H)M(I_n + H)^{-1} = M$.

5) Remarquons déjà que :

$$(I_n + H)M(I_n + H)^{-1} = M \quad \Longleftrightarrow \quad (I_n + H)M = M(I_n + H) \quad \Longleftrightarrow \quad M + HM = M + MH \quad \Longleftrightarrow \quad HM = MH \; .$$

Ainsi, toutes les matrices de $B_1 = B(0_n, r')$ commutent avec M.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si $A = 0_n$, alors A et M commutent, sinon $||A|| \neq 0$ et on peut poser $H = \frac{r'}{2||A||}A$.

On a $||H|| = \frac{r'}{2} < r'$, donc $H \in B_1$ et ainsi :

$$HM = MH \quad \Leftrightarrow \quad \left(\frac{r'}{2\|A\|}A\right)M = M\left(\frac{r'}{2\|A\|}A\right) \quad \Leftrightarrow \quad \frac{r'}{2\|A\|}AM = \frac{r'}{2\|A\|}MA \quad \Leftrightarrow \quad AM = MA.$$

Donc, A et M commutent et finalement :

M commute avec toute matrice de $\mathcal{M}_n(\mathbb{C})$.

En particulier, si $M = (a_{i,j})_{i,j \in [\![1,n]\!]}$ commute avec toute matrice, on a $ME_{i,j} = E_{i,j}M$ pour tous $i, j \in [\![1,n]\!]$.

Or, $ME_{i,j}$ est la matrice dont toutes les colonnes sont nulles sauf la $j^{\text{ième}}$ qui est la $i^{\text{ième}}$ colonne de M, et $E_{i,j}M$ est la matrice dont toutes les lignes sont nulles sauf la $i^{\text{ième}}$ qui est la $j^{\text{ième}}$ ligne de M.

Ceci donne $a_{i,j} = 0$ quand $i \neq j$ et $a_{1,1} = a_{2,2} = \dots = a_{n,n}$, et donc :

M est une matrice d'homothétie.

Enfin, si $M = \lambda I_n$, on a $P(M) = P(\lambda I_n) = P(\lambda)I_n = 0_n$, donc $P(\lambda) = 0$, autrement dit:

Le rapport de M est une racine de P.

6) Si λ est racine multiple de P, alors on peut écrire $P = (X - \lambda)^2 Q$, avec $Q \in \mathbb{C}[X]$ et pour tout $M \in \mathcal{M}_n(\mathbb{C})$:

$$P(M) = (M - \lambda I_n)^2 Q(M).$$

D'après la question 3, il existe une suite de matrices $(M_k)_{k\in\mathbb{N}}$ convergeant vers λI_n et telle que, pour tout $k\in\mathbb{N}$, $(M_k-\lambda I_n)^2=0_n$, donc $P(M_k)=(M_k-\lambda I_n)^2Q(M_k)=0_n$.

Ainsi, $(M_k)_{k\in\mathbb{N}}$ est une suite de matrices de E_p qui converge vers λI_n , donc on peut trouver des matrices de E_p aussi proches de λI_n que l'on veut et ainsi :

Si λ est racine multiple de P, alors λI_n n'est pas un point isolé de E_p .

7) Soit λ une racine simple de P. On peut alors écrire $P = (X - \lambda)Q$, avec $Q \in \mathbb{C}[X]$ et $Q(\lambda) \neq 0$.

On a $P(\lambda I_n) = P(\lambda)I_n = 0_n$, donc $\lambda I_n \in E_p$.

Supposons que λI_n n'est pas un point isolé de E_p . Il existe alors une suite $(M_k)_{k\in\mathbb{N}}$ de matrices de E_p , toutes différentes de λI_n et convergeant vers λI_n .

Remarquons que l'application $M \mapsto \chi_M = \det \left(X I_n - M \right)$ est continue sur $\mathcal{M}_n(\mathbb{C})$ (car $M \mapsto X I_n - M$ l'est et $M \mapsto \det M$ aussi). Alors, comme $\lim_{k \to +\infty} M_k = \lambda I_n$, on a $\lim_{k \to +\infty} \chi_{M_k} = \chi_{\lambda I_n} = (X - \lambda)^n$. Alors, si λ_k est une valeur propre de M_k , on a $\lim_{k \to +\infty} \lambda_k = \lambda$.

Notons $\alpha_1, \alpha_2, \dots, \alpha_p$ les racines de Q (distinctes ou pas), soit $Q = \gamma \prod_{i=1}^p (X - \alpha_i)$ avec $\gamma \neq 0$.

Comme $Q(\lambda) \neq 0$, on a $\alpha_j \neq \lambda$ pour tout $j \in [1, p]$ et donc $\varepsilon = \min_{j \in [1, p]} |\alpha_j - \lambda| > 0$.

Comme $\lim_{k \to +\infty} \lambda_k = \lambda$, on a $|\lambda_k - \lambda| < \varepsilon$ et donc $\lambda_k \neq \alpha_j$ pour tout $j \in [1, p]$, à partir d'un certain rang $N \in \mathbb{N}$.

Ainsi, à partir du rang N, les α_j ne sont pas valeur propre de M_k , donc $M_k - \alpha_j I_n$ est inversible pour tout $j \in [1, p]$, et donc $Q(M_k) = \gamma \prod_{i=1}^p (M_k - \alpha_j I_n)$ est inversible.

Enfin, pour tout $k \in \mathbb{N}$, on a $M_k \in E_p$, donc $P(M_k) = (M_k - \lambda I_n)Q(M_k) = 0_n$ et à partir du rang N, $Q(M_k)$ est inversible, donc $(M_k - \lambda I_n)Q(M_k)Q(M_k)^{-1} = M_k - \lambda I_n = 0_n$, soit $M_k = \lambda I_n$. Ceci est absurde car par hypothèse, toutes les matrices M_k sont différentes de λI_n .

Finalement, supposer que λI_n n'est pas un point isolé de E_p mène à une absurdité, donc :

Si λ est racine simple de P alors λI_n est un point isolé de E_p .