Résumé du chapitre 10 : Intégration sur un intervalle

Dans tout le chapitre, et sauf mention contraire, I est un intervalle de $\mathbb R$ et f est une fonction définie sur I et à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I - Fonctions continues par morceaux

I-1. Définitions

Rappels:

- Une subdivision d'un segment [a,b] est une famille $\sigma = (a_0, a_1, ..., a_n)$ telle que $a_0 = a$, $a_n = b$ et pour tout $k \in [0; n-1], a_k < a_{k+1}$.
- Une subdivision $\sigma = (a_0, a_1, ..., a_n)$ d'un segment [a,b] est régulière si pour tout $k \in [0; n-1]$, $a_{k+1} a_k$ ne dépend pas de k et vaut alors $\frac{b-a}{n}$. Dans ce cas, on a pour tout $k \in [0;n]$:

$$a_k = a + k \frac{b-a}{n}$$
.

Définitions:

Une fonction f définie sur un segment [a,b] est dite <u>continue par morceaux</u> (cpm) sur [a,b] s'il existe une subdivision $\sigma = (a_0, a_1, ..., a_n)$ de [a,b] telle que pour tout $k \in [0; n-1], f$ est continue sur $]a_k, a_{k+1}[$ et admet une limite finie en a_k^+ et en a_{k+1}^- . La subdivision σ est dite <u>adaptée</u> à f.

Une fonction f est continue par morceaux sur un intervalle I si elle l'est sur tout segment inclus dans I.

Notation: On note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I et à valeurs dans \mathbb{K} .

Propriété:

- $\mathcal{M}([a,b],\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{B}([a,b],\mathbb{K})$ (fonctions bornées sur [a,b]), stable par produit.

 • $\mathcal{CM}(I,\mathbb{K})$ est un sous-espace vectoriel de \mathbb{K}^I , stable par produit.

I-2. Intégrale d'une fonction continue par morceaux sur un segment

Définition:

Soit $f \in \mathcal{CM}([a,b],\mathbb{K})$ et $\sigma = (a_0, a_1, ..., a_n)$ une subdivision de [a,b] adaptée à f.

L'<u>intégrale</u> de f sur [a,b], notée $\int_{[a,b]} f$ ou $\int_a^b f$ ou $\int_a^b f(t) dt$, est $\sum_{k=0}^{n-1} \int_{[a_k,a_{k+1}]} \tilde{f}_k$ avec :

$$\tilde{f}_k : x \mapsto \begin{cases} \lim_{a_k^+} f & \text{en } a_k \\ f(x) & \text{sur }]a_k, a_{k+1} [.\\ \lim_{a_{k+1}^-} f & \text{en } a_{k+1} \end{cases}$$

Propriétés:

Soient f et g deux fonctions continues par morceaux sur [a,b].

• Linéarité de l'intégrale : Pour tout $(\lambda, \mu) \in \mathbb{R}^2$, on a $\int_{[a,b]} (\lambda f + \mu g) = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g$.

- Positivité: Si f est réelle et positive sur [a,b], alors $\int_{[a,b]} f \ge 0$.
- Croissance de l'intégrale : Si $f \le g$ sur [a,b], alors $\int_{[a,b]} f \le \int_{[a,b]} g$.
- Inégalité de la valeur absolue ou du module : $\left| \int_{[a,b]} f \right| \le \int_{[a,b]} |f|$.
- Inégalités de la moyenne : $\left| \int_{[a,b]} f g \right| \le \sup_{[a,b]} |f| \int_{[a,b]} |g|$.

Si m est un minorant et M est un majorant de f sur [a,b] (f à valeurs réelles), alors :

$$m \le \frac{1}{b-a} \int_{[a,b]} f \le M .$$

- Relation de Chasles: Pour tout $c \in [a,b]$, $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$.
- Inégalité de Cauchy-Schwarz : $\left(\int_{[a,b]} f \times g\right)^2 \le \left(\int_{[a,b]} f^2\right) \times \left(\int_{[a,b]} g^2\right)$.
- Changement de variable : Si φ est une bijection de classe C^1 de I dans J avec $[a,b] \subset J$, alors :

$$\int_a^b f(t)dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} \varphi'(u) f(\varphi(u)) du.$$

II - Intégrales généralisées ou impropres

II-1. Intégrales généralisées sur $[a,+\infty[$

Dans cette partie, a est un réel fixé.

Définitions:

Si f est une application continue par morceaux sur $[a, +\infty[$ et à valeurs complexes.

L'intégrale $\int_a^{+\infty} f(t)dt$ converge ou <u>est convergente</u> si la fonction $x \mapsto \int_a^x f(t)dt$ admet une limite finie lorsque x tend vers $+\infty$. Si tel est le cas, on note $\int_a^{+\infty} f(t)dt$ ou $\int_a^{+\infty} f$ cette limite.

Dans le cas contraire, on dit que l'intégrale diverge ou est divergente

<u>Propriété</u>:

Si f est continue par morceaux sur $[a, +\infty[$ et à valeurs positives, alors $\int_a^{+\infty} f(t)dt$ converge si et seulement si $x \mapsto \int_a^x f(t)dt$ est majorée.

Corollaire:

Si f et g sont continues par morceaux sur $[a, +\infty[$ et $0 \le f \le g$, alors :

- si $\int_{a}^{+\infty} g(t)dt$ converge, alors $\int_{a}^{+\infty} f(t)dt$ aussi;
- si $\int_{a}^{+\infty} f(t)dt$ diverge, $\int_{a}^{+\infty} g(t)dt$ aussi.

II-2. Intégrales généralisées sur un intervalle quelconque

Soient I = |a,b| un intervalle de \mathbb{R} avec |=| ou [, $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, $a \le b$, et f une fonction à valeurs réelles ou complexes, continue par morceaux sur I.

Définitions :

L'intégrale $\int_a^b f(t)dt$ est dite <u>impropre en a (resp. en b)</u> si $a \notin I$ (resp. $b \notin I$).

On dit qu'elle <u>converge</u> ou <u>est convergente</u> si, pour tout $c \in I$, les fonctions $x \mapsto \int_x^c f(t)dt$ et $y \mapsto \int_c^y f(t)dt$ admettent une limite finie lorsque x tend vers a et y tend vers b.

Dans ce cas, on note $\int_a^b f(t)dt$, ou $\int_a^b f$, ou encore $\int_I f$, la limite de $\int_x^y f(t)dt$ quand $x \to a$ et $y \to b$.

Dans le cas contraire, on dit que l'intégrale diverge ou est divergente.

Notation: Par convention, $[f]_a^b = \lim_b f - \lim_a f$ et on utilise cette notation quand les deux limites existent et sont finies.

Propriété:

Si a et b sont finis et f est continue par morceaux sur I =]a,b[(resp. I = [a,b[, resp. I =]a,b[) et admet une limite finie en a (resp. en b, resp. en a et b), alors $\int_a^b f(t)dt$ converge.

II-3. Intégrales de référence

a. Intégrales de Riemann:

Définition:

Les intégrales $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$ et $\int_{0}^{1} \frac{dt}{t^{\alpha}}$ sont appelées <u>intégrales de Riemann</u>.

Propriété:

L'intégrale $\int_0^1 \frac{dt}{t^{\alpha}}$, impropre en 0, converge si et seulement si $\alpha < 1$ et vaut $\frac{1}{1-\alpha}$ dans ce cas.

L'intégrale $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$, impropre en $+\infty$, converge si et seulement si $\alpha > 1$ et vaut $\frac{1}{\alpha - 1}$ dans ce cas.

b. Autres intégrales de référence :

Propriété:

Pour $\alpha \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} e^{-\alpha t} dt$ converge si et seulement si $\alpha > 0$ et dans ce cas, $\int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}$.

Propriété:

Pour tout réel a > 0, l'intégrale $\int_0^a \ln t \, dt$ et vaut $\int_0^a \ln t \, dt = a \ln a - a$.

II-4. Propriétés des intégrales généralisées

a. Propriétés usuelles :

Propriétés:

Soient f et g deux fonctions continues par morceaux sur I = |a,b| (comme défini plus haut) telles que les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ convergent.

- Linéarité de l'intégrale : Pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\int_a^b (\lambda f + \mu g)$ converge et $\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g$.
- *Positivité*: Si f est réelle et positive sur I, alors $\int_a^b f \ge 0$.

De plus, si f est continue sur I, alors $\int_I f = 0$ si et seulement si f est nulle sur I.

- Croissance de l'intégrale : Si $f \le g$ sur I, alors $\int_a^b f \le \int_a^b g$.
- Relation de Chasles: Pour tout $c \in I$, $\int_a^b f = \int_a^c f + \int_c^b f$.

b. Changement de variable :

Propriété:

Soit $f: I \to \mathbb{C}$, continue par morceaux sur I et φ une bijection strictement monotone de classe C^1 d'un intervalle $J = |\alpha, \beta|$ dans I.

L'intégrale $\int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$ converge si et seulement si $\int_{a}^{b} f(t) dt$ est converge et, dans ce cas, les deux intégrales sont égales.

c. Intégration par parties :

Soient f et g deux fonctions de classe C^1 sur I.

Si $[f(t)g(t)]_a^b$ converge, alors les intégrales $\int_a^b f(t)g'(t)dt$ et $\int_a^b f'(t)g(t)dt$ sont de même nature et en cas de convergence, on a :

$$\int_a^b f(t)g'(t)dt = \left[f(t)g(t)\right]_a^b - \int_a^b f'(t)g(t)dt.$$

III - Intégrales absolument convergentes et fonctions intégrables

III-1. Généralités

Définitions :

Soit f une fonction continue par morceaux sur I = |a,b|.

On dit que l'intégrale $\int_a^b f(t)dt$ est <u>absolument convergente</u> si l'intégrale $\int_a^b |f(t)|dt$ converge.

Dans ce cas, on dit que la fonction f est intégrable sur I.

On dit que l'intégrale $\int_a^b f(t)dt$ est <u>semi-convergente</u> si elle converge sans que $\int_a^b |f(t)|dt$ converge.

III-2. Propriétés de comparaison

Lemme:

Soient f et g deux fonctions continues par morceaux et positives sur I = |a,b| telles que $f \le g$.

Si
$$\int_a^b g(t)dt$$
 converge, alors $\int_a^b f(t)dt$ aussi et $\int_a^b f(t)dt \le \int_a^b g(t)dt$.

Théorème:

Soit f une fonction continue par morceaux sur I = |a,b|.

Si l'intégrale $\int_a^b f(t)dt$ est absolument convergente, alors elle est convergente et dans ce cas, on a :

$$\left| \int_a^b f(t)dt \right| \le \int_a^b \left| f(t) \right| dt .$$

Propriétés:

Soient f et g deux fonctions continues par morceaux sur [a,b[avec $b \in \mathbb{R}$ ou $b=+\infty$.

- Si $|f| \le |g|$, alors si g est intégrable sur [a,b[,f]'est aussi avec $\int_a^b |f| \le \int_a^b |g|$ et si f n'est pas intégrable sur [a,b[,g] ne l'est pas non plus.
- Si f = Q(g), on a les mêmes résultats que ci-dessus.
- Si $f \sim g$, alors f est intégrable sur [a,b[si et seulement si g l'est.

Propriété: Inégalité de Cauchy-Schwarz

Soient f et g deux fonctions continues par morceaux sur I = |a,b| (comme défini plus haut) telles que les intégrales $\int_a^b f^2$ et $\int_a^b g^2$ convergent. Alors $\int_a^b fg$ converge et :

$$\left(\int_a^b fg\right)^2 \le \left(\int_a^b f^2\right) \times \left(\int_a^b g^2\right).$$

III-3. Espace $L^1(I,\mathbb{K})$ des fonctions intégrables

 $\underline{Notation}$: On note $L^1(I,\mathbb{K})$ l'ensemble des fonctions définies sur I, à valeurs dans \mathbb{K} , continues par morceaux et intégrables sur I.

Propriétés:

Muni des lois usuelles, $L^1(I, \mathbb{K})$ est un \mathbb{K} - espace vectoriel.

L'application $f \mapsto \int_a^b |f|$ est une norme sur $L^1(I, \mathbb{K}) \cap C^0(I, \mathbb{K})$.