Corrigé du DS n° 1

Problème n° 1

PRELIMINAIRES

1) Les fonctions |f| et h sont réelles positives sur $[1, +\infty[$, donc $x \mapsto \int_1^x |f(t)| dt$ et $x \mapsto \int_1^x h(t) dt$ sont croissantes sur $[1, +\infty[$. Comme $x \mapsto \int_1^x h(t) dt$ admet une limite finie quand $x \to +\infty$ que l'on notera L, on a $\int_1^x h(t) dt \le L$ pour tout $x \in [1, +\infty[$. Comme $|f(x)| \le h(x)$, on a pour tout $x \in [1, +\infty[$:

$$\int_{1}^{x} |f(t)| dt \leq \int_{1}^{x} h(t) dt \leq L.$$

Ainsi, $x \mapsto \int_1^x |f(t)| dt$ est croissante et majorée par L sur $[1, +\infty[$, donc d'après le théorème de la limite monotone :

$$x \mapsto \int_{1}^{x} |f(t)| dt$$
 admet une limite finie quand $x \to +\infty$.

2) On suppose dans un premier temps f réelle et on pose :

$$f_+: x \mapsto \begin{cases} f(x) = |f(x)| & \text{quand } f(x) \ge 0 \\ 0 & \text{quand } f(x) < 0 \end{cases} \text{ et } f_-: x \mapsto \begin{cases} 0 & \text{quand } f(x) \ge 0 \\ -f(x) = |f(x)| & \text{quand } f(x) < 0 \end{cases}$$

On a pour tout $x \in [1, +\infty[$, $0 \le f_+(x) \le |f(x)|$ et $0 \le f_-(x) \le |f(x)|$. Comme $x \mapsto \int_1^x |f(t)| dt$ admet une limite finie quand $x \to +\infty$, les fonctions $x \mapsto \int_1^x |f_+(t)| dt = \int_1^x f_+(t) dt$ et $x \mapsto \int_1^x |f_-(t)| dt = \int_1^x f_-(t) dt$ admettent une limite finie quand $x \to +\infty$.

Or, $f = f_+ + f_-$, donc pour tout $x \in [1, +\infty[$, $\int_1^x f(t)dt = \int_1^x f_+(t)dt + \int_1^x f_-(t)dt$ et $x \mapsto \int_1^x f(t)dt$ admet une limite finie quand $x \to +\infty$.

On suppose maintenant que f est à valeurs complexes. Pour tout $x \in [1, +\infty[$, $|\text{Re}(f(x))| \le |f(x)|$, donc, d'après la question $1, x \mapsto \int_1^x |\text{Re}(f(t))| dt$ admet une limite finie quand $x \to +\infty$ et d'après ce qui précède, $x \mapsto \int_1^x \text{Re}(f(t)) dt = \text{Re}\left[\int_1^x f(t) dt\right]$ admet une limite finie quand $x \to +\infty$.

On prouve de même que $x \mapsto \int_1^x \operatorname{Im}(f(t)) dt = \operatorname{Im}\left[\int_1^x f(t) dt\right]$ admet une limite finie quand $x \to +\infty$ et finalement, $x \mapsto \int_1^x f(t) dt$ admet une limite finie quand $x \to +\infty$.

Ainsi, dans tous les cas :

Si
$$x \mapsto \int_1^x |f(t)| dt$$
 admet une limite finie quand $x \to +\infty$, alors $x \mapsto \int_1^x f(t) dt$ aussi.

PSI* septembre 2023

3) a. Pour tout entier naturel $n \ge 2$, on a, en intégrant par parties (on peut car f est de classe C^1):

$$\begin{split} w_n &= \int_{n-1}^n f(t)dt - f(n) = \left[tf(t)\right]_{n-1}^n - \int_{n-1}^n t \, f'(t)dt - f(n) \\ &= nf(n) - (n-1)f(n-1) - \int_{n-1}^n t \, f'(t)dt - f(n) = (n-1)\left[f(n) - f(n-1)\right] - \int_{n-1}^n t \, f'(t)dt \\ &= (n-1)\int_{n-1}^n f'(t)dt - \int_{n-1}^n t \, f'(t)dt \end{split}$$

Soit finalement:

$$w_n = \int_{n-1}^n (n-1-t) f'(t) dt$$

On a alors:

$$|w_n| = \left| \int_{n-1}^n (n-1-t) f'(t) dt \right| \le \int_{n-1}^n \left| (n-1-t) f'(t) \right| dt = \int_{n-1}^n \left| (n-1-t) f'(t) \right| dt$$
.

Or, pour tout $t \in [n-1, n]$, $|n-1-t| = t - (n-1) \le 1$, donc:

$$\left| w_n \right| \le \int_{n-1}^n \left| f'(t) \right| dt$$

b. Pour tout entier nature $n \ge 2$, on a $\sum_{k=2}^{n} \int_{k-1}^{k} |f'(t)| dt = \int_{1}^{n} |f'(t)| dt$. Or, $\int_{1}^{x} |f'(t)| dt$ admet une limite finie quand $x \to +\infty$, donc la série $\sum_{k=2}^{n} \int_{k-1}^{1} |f'(t)| dt$ converge et par comparaison, $\sum_{k=2}^{n} |w_{n}|$ converge, donc:

La série
$$\sum w_n$$
 est absolument convergente.

c. D'après ce qui précède, $\sum w_n$ est absolument convergente, donc convergente.

Or, pour tout entier nature $n \ge 2$, on a $f(n) = \int_{n-1}^{n} f(t)dt - w_n$, ce qui permet de conclure immédiatement que $\sum f(n)$ converge si et seulement si $\sum \int_{n-1}^{n} f(t)dt$ converge. Enfin, $\sum_{k=1}^{n} \int_{k-1}^{k} f(t)dt = \int_{1}^{n} f(t)dt$ et ainsi :

La série
$$\sum f(n)$$
 converge si et seulement si la suite $\left(\int_{1}^{n} f(t)dt\right)_{n\in\mathbb{N}^{+}}$ converge.

4) a. La fonction f est de classe C^1 sur $[1, +\infty[$ et pour tout $x \in [1, +\infty[$:

$$f'(x) = \frac{1}{x^2} \left(x \frac{1}{2\sqrt{x}} \cos \sqrt{x} - \sin \sqrt{x} \right) = \frac{\cos \sqrt{x}}{2x\sqrt{x}} - \frac{\sin \sqrt{x}}{x^2}.$$

Alors, pour tout $x \in [1, +\infty[$, on a $|f'(x)| \le \frac{|\cos \sqrt{x}|}{2x\sqrt{x}} + \frac{|\sin \sqrt{x}|}{x^2} \le \frac{1}{2x^{3/2}} + \frac{1}{x^2}$ et:

$$\lim_{x \to +\infty} \int_{1}^{x} \left(\frac{1}{2t^{3/2}} + \frac{1}{t^{2}} \right) dt = \lim_{x \to +\infty} \left(2 - \frac{1}{\sqrt{x}} - \frac{1}{x} \right) = 2.$$

Donc, d'après la question 1 :

$$x \mapsto \int_1^x |f'(t)| dt$$
 admet une limite finie quand $x \to +\infty$.

b. Pour tout $x \in [1, +\infty[$, en posant le changement de variable $u = \sqrt{t}$ (soit $t = u^2$ et dt = 2udu), on a :

$$\int_{1}^{x} f(t)dt = \int_{1}^{x} \frac{\sin \sqrt{t}}{t} dt = \int_{1}^{\sqrt{x}} \frac{\sin u}{u^{2}} 2u du = 2 \int_{1}^{\sqrt{x}} \frac{\sin u}{u} du.$$

En intégrant par parties, on obtient alors :

$$\int_{1}^{x} f(t)dt = 2\left[\left[\frac{-\cos u}{u}\right]_{1}^{\sqrt{x}} - \int_{1}^{\sqrt{x}} -\frac{-\cos u}{u^{2}}du\right] = 2\left[\cos 1 - \frac{\cos \sqrt{x}}{\sqrt{x}} - \int_{1}^{\sqrt{x}} \frac{\cos u}{u^{2}}du\right].$$

Ainsi, on a bien, pour tout $x \in [1, +\infty[$:

$$\int_{1}^{x} f(t)dt = 2\int_{1}^{\sqrt{x}} \frac{\sin u}{u} du = 2\left(\cos 1 - \frac{\cos \sqrt{x}}{\sqrt{x}} - \int_{1}^{\sqrt{x}} \frac{\cos u}{u^{2}} du\right)$$

c. On a pour tout $x \in [1, +\infty[$, $\int_{1}^{\sqrt{x}} \left| \frac{\cos u}{u^2} \right| du \le \int_{1}^{\sqrt{x}} \frac{du}{u^2} = 1 - \frac{1}{\sqrt{x}} - \frac{1}{x \to +\infty} + 1$, donc, comme plus haut, on peut conclure que la fonction $x \mapsto \int_{1}^{\sqrt{x}} \left| \frac{\cos u}{u^2} \right| du$ admet une limite finie quand $x \to +\infty$.

D'après la question 2, il en va de même pour $x \mapsto \int_1^{\sqrt{x}} \frac{\cos u}{u^2} du$ et, comme $\lim_{x \to +\infty} \frac{\cos \sqrt{x}}{\sqrt{x}} = 0$, la fonction $x \mapsto \int_1^x f(t) dt$ admet, elle aussi, une limite finie quand $x \to +\infty$.

Ceci prouve que la suite $\left(\int_{1}^{n} f(t)dt\right)_{n\in\mathbb{N}^{*}}$ converge.

Or, d'après la question a, la fonction f vérifie les hypothèses de la question 3, ce qui permet de conclure que la série $\sum f(n)$ converge, autrement dit :

La série
$$\sum \frac{\sin \sqrt{n}}{n}$$
 converge.

PARTIE I

5) On a ici
$$\lim_{n \to +\infty} S_n = S \neq 0$$
. Comme $v_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{S_n}{n}$, on a : $v_n \sim \frac{S}{n}$.

Or, la série harmonique diverge, donc :

La série
$$\sum v_n$$
 diverge.

PSI* septembre 2023

6) On a pour tout $n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{2E\left(\frac{n+1}{2}\right)}$, soit, plus simplement:

$$u_n = \begin{cases} \frac{1}{n} & \text{quand } n \text{ est pair} \\ -\frac{1}{n+1} & \text{quand } n \text{ est impair} \end{cases}$$

On a alors pour tout $p \in \mathbb{N}^*$:

$$S_{2p} = \sum_{k=1}^{2p} u_k = \sum_{k=1}^{p} u_{2k} + \sum_{k=1}^{p} u_{2k-1} = \sum_{k=1}^{p} \frac{1}{2k} - \sum_{k=1}^{p} \frac{1}{2k} = 0$$

Et:

$$S_{2p+1} = S_{2p} + u_{2p+1} = 0 - \frac{1}{2p+1+1} = -\frac{1}{2(p+1)}$$

Donc, $\lim_{p \to +\infty} S_{2p} = \lim_{p \to +\infty} S_{2p+1} = 0$, et ainsi:

$$\sum u_n$$
 converge et $S=0$.

D'après ce qui précède :

$$v_n = \frac{S_n}{n} = \begin{cases} 0 & \text{quand } n \text{ est pair} \\ -\frac{1}{n(n+1)} & \text{quand } n \text{ est impair} \end{cases}$$

Comme $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$ et la série de Riemann converge, la série $\sum \left(-\frac{1}{n(n+1)}\right)$ converge et donc :

$$\sum v_n$$
 converge.

7) On procède comme ci-dessus. On a pour tout $p \in \mathbb{N}^*$:

$$\begin{cases} u_{2p} = \frac{1}{\ln(p+1)} \\ u_{2p-1} = -\frac{1}{\ln(p+1)} \end{cases} \Rightarrow \begin{cases} S_{2p} = 0 \\ S_{2p-1} = -\frac{1}{\ln(p+1)} \end{cases} \Rightarrow \begin{cases} v_{2p} = 0 \\ v_{2p-1} = -\frac{1}{(2p-1)\ln(p+1)} \end{cases}$$

Alors, $\lim_{p \to +\infty} S_{2p} = \lim_{p \to +\infty} S_{2p-1} = 0$, d'où :

$$\sum u_n$$
 converge et $S=0$.

Comme $v_{2p-1} \sim -\frac{1}{2p \ln p}$ et la série $\sum \frac{1}{n \ln n}$ diverge (par comparaison série-intégrale) :

$$\sum v_n$$
 diverge.

8) Dans les deux questions précédentes, on a S = 0 et une fois $\sum v_n$ converge, une fois elle diverge, donc :

Quand S=0, on ne peut pas conclure quant à la nature de la série $\sum v_n$.

PARTIE II

9) Si la série $\sum u_n$ diverge vers $+\infty$ ou $-\infty$, S_n et donc v_n sont de signe constant à partir d'un certain rang (positif si $\lim_{n \to \infty} S_n = +\infty$, négatif si $\lim_{n \to \infty} S_n = -\infty$).

De plus, $\lim_{n \to +\infty} |S_n| = \lim_{n \to +\infty} |n v_n| = +\infty$, donc $\frac{1}{n} = o(v_n)$. Comme la série harmonique diverge :

$$\sum v_n$$
 diverge.

PARTIE III

10) Ici, $u_n = (-1)^n$. La suite u ne converge pas vers 0, donc $\sum u_n$ diverge grossièrement.

De plus, pour tout $n \in \mathbb{N}^*$:

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n (-1)^k = (-1) \frac{1 - (-1)^n}{1 - (-1)} = \frac{(-1)^n - 1}{2}.$$

Donc, $(S_n)_{n \in \mathbb{N}^*}$ n'admet pas de limite. Ainsi :

La suite $(u_n)_{n\in\mathbb{N}^*}$ vérifie bien les hypothèses de cette partie.

On a $\forall n \in \mathbb{N}^*$, $v_n = \frac{S_n}{n} = \frac{(-1)^n - 1}{2n} = \frac{1}{2} \frac{(-1)^n}{n} - \frac{1}{2} \frac{1}{n}$. La série $\sum \frac{(-1)^n}{n}$ converge, mais la série harmonique $\sum \frac{1}{n}$ diverge, donc :

$$\sum v_n$$
 diverge.

11) Ici, $u_1 = -1$ et, pour $n \ge 2$, $u_n = 2(-1)^n$.

La suite u ne converge pas vers 0, donc $\sum u_n$ diverge grossièrement. De plus, pour tout $n \in \mathbb{N}^*$ avec $n \ge 2$:

$$S_n = \sum_{k=1}^n u_k = -1 + 2\sum_{k=2}^n (-1)^k = -1 + 2(-1)^2 \frac{1 - (-1)^{n-1}}{1 - (-1)} = (-1)^n.$$

Donc, $(S_n)_{n \in \mathbb{N}^*}$ n'admet pas de limite. Ainsi :

La suite $(u_n)_{n\in\mathbb{N}^*}$ vérifie bien les hypothèses de cette partie.

PSI* septembre 2023

On a $\forall n \in \mathbb{N}^*$, $v_n = \frac{S_n}{n} = \frac{(-1)^n}{n}$ et la série $\sum \frac{(-1)^n}{n}$ converge, donc :

$$\sum v_n$$
 converge.

12) Dans les deux questions précédentes, une fois $\sum v_n$ converge, une fois elle diverge, donc :

Quand la série $\sum u_n$ diverge grossièrement et que $(S_n)_{n \in \mathbb{N}^*}$ n'admet pas de limite, on ne peut pas conclure quant à la nature de la série $\sum v_n$.

PARTIE IV

13) $\forall n \in \mathbb{N}^*$:

$$\begin{split} u_n &= \sin(\sqrt{n}) - \sin(\sqrt{n-1}) \\ &= 2\sin\left(\frac{\sqrt{n} - \sqrt{n-1}}{2}\right)\cos\left(\frac{\sqrt{n} + \sqrt{n-1}}{2}\right) \\ &= 2\sin\left(\frac{1}{2(\sqrt{n} + \sqrt{n-1})}\right)\cos\left(\frac{\sqrt{n} + \sqrt{n-1}}{2}\right) \end{split}$$

Donc $|u_n| \le 2 \left| \sin \left(\frac{1}{2(\sqrt{n} + \sqrt{n-1})} \right) \right|$ et comme $\lim_{n \to +\infty} \sin \left(\frac{1}{2(\sqrt{n} + \sqrt{n-1})} \right) = \sin 0 = 0$, on a bien $\lim_{n \to +\infty} u_n = 0$.

De plus, on a par télescopage, $\forall n \in \mathbb{N}^*$:

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n \left(\sin(\sqrt{k}) - \sin(\sqrt{k-1}) \right) = \sin(\sqrt{n}) - \sin(\sqrt{0}) = \sin(\sqrt{n}).$$

Alors, $\forall n \in \mathbb{N}^*$, $S_{n^2} = \sin n$, donc, d'après le résultat rappelé dans l'énoncé, $(S_{n^2})_{n \in \mathbb{N}^*}$ n'a pas de limite.

Or, si $(S_n)_{n \in \mathbb{N}^*}$ admettait une limite, toute suite extraite aurait la même limite, y compris $(S_{n^2})_{n \in \mathbb{N}^*}$. Donc, $(S_n)_{n \in \mathbb{N}^*}$ n'admet pas de limite, et ainsi :

La suite $(u_n)_{n\in\mathbb{N}^*}$ vérifie bien les hypothèses de cette partie.

On a $\forall n \in \mathbb{N}^*$, $v_n = \frac{S_n}{n} = \frac{\sin(\sqrt{n})}{n}$ et, d'après la question les préliminaires, la série $\sum \frac{\sin\sqrt{n}}{n}$ converge, donc :

$$\sum v_n$$
 converge.

14) Comme la suite u est la même que celle de la question précédente en dehors de son premier terme, sa limite est toujours 0. De plus, $\forall n \in \mathbb{N}^*$, $S_n = 1 + \sin(\sqrt{n})$, donc $(S_n)_{n \in \mathbb{N}^*}$ n'admet pas de limite, et ainsi :

La suite $(u_n)_{n\in\mathbb{N}^*}$ vérifie bien les hypothèses de cette partie.

On a ici $\forall n \in \mathbb{N}^*$, $v_n = \frac{S_n}{n} = \frac{1 + \sin(\sqrt{n})}{n} = \frac{1}{n} + \frac{\sin(\sqrt{n})}{n}$. Comme $\sum \frac{\sin \sqrt{n}}{n}$ converge et $\sum \frac{1}{n}$ diverge: $\sum v_n$ diverge.

15) Dans les deux questions précédentes, une fois $\sum v_n$ converge, une fois elle diverge, donc :

Quand la série $\sum u_n$ diverge, mais pas grossièrement, et que $(S_n)_{n\in\mathbb{N}^*}$ n'admet pas de limite, on ne peut pas conclure quant à la nature de la série $\sum v_n$.

CONCLUSION

16) Dans les quatre parties précédentes, nous avons passé en revue tous les comportements possibles pour la série $\sum u_n$: convergence, divergence vers l'infini ou absence de limite pour la somme partielle.

En définitive, on peut conclure quant à la nature de $\sum v_n$ uniquement dans le cas où la somme partielle S_n de la suite u admet une limite non nulle (finie ou infinie).

Problème n° 2

Q1. Soit $C = diag(z_1, ..., z_n) \in \mathcal{M}_n(\mathbb{C})$. On a alors $\overline{C} = diag(\overline{z_1}, ..., \overline{z_n})$ et

$$I_n + C\overline{C} = diag\left(1 + z_1\overline{z}_1, \dots, 1 + z_n\overline{z}_n\right) = diag\left(1 + \left|z_1\right|^2, \dots, 1 + \left|z_n\right|^2\right).$$

Donc:

$$\det\left(I_{n}+C\overline{C}\right)=\prod_{k=1}^{n}\left(1+\left|z_{k}\right|^{2}\right).$$

Comme pour tout $k \in [1, n]$, $1 + |z_k|^2$ est un réel supérieur ou égal à 1, on a :

$$\det(I_n + C\overline{C}) \in \mathbb{R} \ \text{et} \ \det(I_n + C\overline{C}) \ge 1.$$

De plus:

$$\det\left(I_n + C\overline{C}\right) = \prod_{k=1}^n \left(1 + \left|z_k\right|^2\right) = 1 \quad \Longleftrightarrow \quad \forall \ k \in [[1, n]], \ 1 + \left|z_k\right|^2 = 1 \quad \Longleftrightarrow \quad \forall \ k \in [[1, n]], \ z_k = 0.$$

Donc:

$$\det(I_n + C\overline{C}) = 1$$
 si et seulement si $C = 0_n$.

Q2. On veut prouver par récurrence sur n que pour tout $n \in \mathbb{N}^*$ et toute matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on a :

$$\det\left(\overline{A}\right) = \overline{\det A}.$$

• Pour n=1, pour tout $A=(a_{1,1})\in \mathcal{M}_1(\mathbb{C})$, on a $\det A=a_{1,1}$ et $\overline{A}=(\overline{a}_{1,1})$, donc $\det(\overline{A})=\overline{a}_{1,1}=\overline{\det A}$. La propriété est donc vraie au rang n=1. PSI* septembre 2023

• Supposons la propriété vraie à un rang $n \in \mathbb{N}^*$. Soit $A = (a_{i,i})_{1 \le i, i \le n+1} \in \mathcal{M}_{n+1}(\mathbb{C})$.

Pour tout $i \in [1, n+1]$, notons $A_i \in \mathcal{M}_n(\mathbb{C})$ la matrice obtenue en enlevant la dernière colonne et la $i^{\text{ième}}$ de la matrice A. On a alors en développant par rapport à la dernière colonne :

$$\det(\overline{A}) = \sum_{i=1}^{n+1} (-1)^{n+i} \overline{a}_{i,n+1} \det(\overline{A}_i).$$

Or, par hypothèse de récurrence, on a $\det(\overline{A_i}) = \overline{\det A_i}$ pour tout $i \in [1, n+1]$, donc :

$$\det(\overline{A}) = \sum_{i=1}^{n+1} (-1)^{n+i} \overline{a_{i,n+1}} \overline{\det A_i} = \sum_{i=1}^{n+1} \overline{(-1)^{n+i} a_{i,n+1} \det A_i} = \overline{\sum_{i=1}^{n+1} (-1)^{n+i} a_{i,n+1} \det A_i}.$$

Et comme en développant par rapport à la dernière colonne, on a det $A = \sum_{i=1}^{n+1} (-1)^{n+i} a_{i,n+1} \det A_i$, on obtient :

$$\det\left(\overline{A}\right) = \overline{\det A}.$$

Ainsi, la propriété est donc vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}^*$, soit :

$$\forall n \in \mathbb{N}^*, \ \forall A \in \mathcal{M}_n(\mathbb{C}), \ \det(\overline{A}) = \overline{\det A}.$$

Q3. Ici, $C \in \mathcal{M}_n(\mathbb{R})$. Comme $C + iI_n$ et $C - iI_n$ commutent, on a :

$$(C+iI_n)(C-iI_n)=C^2+I_n.$$

De plus, comme C est réelle, $C + iI_n = \overline{C - iI_n}$, donc :

$$\det(I_n + C^2) = \det[(C + iI_n)(C - iI_n)] = \det(C + iI_n)\det(C - iI_n) = \det(\overline{C - iI_n})\det(C - iI_n)$$

Avec la question précédente, on obtient :

$$\det(I_n + C^2) = \overline{\det(C - iI_n)} \det(C - iI_n)$$

Soit:

$$\det\left(I_n + C^2\right) = \left|\det\left(C - iI_n\right)\right|^2$$

Comme $|z|^2 \in \mathbb{R}_+$ pour tout $z \in \mathbb{C}$, on a bien:

$$\det\left(I_n+C^2\right)\in\mathbb{R}_+$$

De plus, comme ici $\overline{C} = C$, on a:

$$\det\left(I_n + C\overline{C}\right) = \det\left(I_n + C^2\right) = 0 \iff \left|\det\left(C - iI_n\right)\right| = 0 \iff \det\left(iI_n - C\right) = 0 \iff i \in Sp(C).$$

Soit:

$$\det(I_n + C\overline{C}) = 0 \iff i \in Sp(C)$$

Q4. Soit $A \in \mathcal{M}_{p}(\mathbb{C})$ fixée.

Montrons par récurrence sur $p \in \mathbb{N}^*$ que pour toute matrice $B \in \mathcal{M}_{n,p}(\mathbb{C})$, on a $\det \begin{pmatrix} A & B \\ 0_{n,p} & I_n \end{pmatrix} = \det A$.

• Pour p=1, soit $B \in \mathcal{M}_{n,1}(\mathbb{C})$. En développant par rapport à la dernière ligne, on obtient :

$$\det\begin{pmatrix} A & B \\ 0_{1,n} & 1 \end{pmatrix} = (-1)^{2(n+1)} \times 1 \times \det A = \det A.$$

Donc, la propriété est vraie au rang p = 1.

• Supposons la propriété vraie à un rang $p \in \mathbb{N}^*$.

Soit $B \in \mathcal{M}_{n,p+1}(\mathbb{C})$. On peut écrire $B = (B_1 \mid \beta)$ avec $\beta \in \mathcal{M}_{n,1}(\mathbb{C})$ et $B_1 \in \mathcal{M}_{n,p}(\mathbb{C})$. Alors:

$$\det\begin{pmatrix} A & B \\ 0_{p+1,n} & I_{p+1} \end{pmatrix} = \det\begin{pmatrix} A' & \beta' \\ 0_{1,n} & 1 \end{pmatrix}$$

avec
$$A' = \begin{pmatrix} A & B \\ 0_{p,n} & I_p \end{pmatrix}$$
 et $\beta' = \begin{pmatrix} \beta \\ 0_{p,1} \end{pmatrix} \in \mathcal{M}_{n+p,1}(\mathbb{C})$.

En développant par rapport à la dernière ligne, on obtient :

$$\det\begin{pmatrix} A & B \\ 0_{p+1,n} & I_{p+1} \end{pmatrix} = \det(A').$$

Et, par hypothèse de récurrence, $\det(A') = \det(A)$, donc $\det\begin{pmatrix} A & B \\ 0_{p+1,n} & I_{p+1} \end{pmatrix} = \det(A)$.

La propriété est vraie au rang p+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $p \in \mathbb{N}^*$, soit :

Pour toutes matrices
$$A \in \mathcal{M}_n(\mathbb{C})$$
 et $B \in \mathcal{M}_{n,p}(\mathbb{C})$, $\det \begin{pmatrix} A & B \\ 0_{p,n} & I_p \end{pmatrix} = \det A$.

Q5. En utilisant le premier résultat admis, on obtient :

$$C_0 \begin{pmatrix} I_n & 0_n \\ -\overline{C} & I_n \end{pmatrix} = \begin{pmatrix} I_n + C\overline{C} & -C \\ 0_n & I_n \end{pmatrix}.$$

Et donc:

$$\det \begin{bmatrix} C_0 \begin{pmatrix} I_n & 0_n \\ -\overline{C} & I_n \end{bmatrix} = \det (C_0) \times \det \begin{pmatrix} I_n & 0_n \\ -\overline{C} & I_n \end{pmatrix} = \det \begin{pmatrix} I_n + C\overline{C} & -C \\ 0_n & I_n \end{pmatrix}.$$

D'après la question précédente, on a :

$$\det\begin{pmatrix} I_n & 0_n \\ -\overline{C} & I_n \end{pmatrix} = \det\begin{pmatrix} \left(I_n & 0_n \\ -\overline{C} & I_n \right)^{\mathsf{T}} \right) = \det\begin{pmatrix} I_n & -\overline{C} \\ 0_n & I_n \end{pmatrix}^{\mathsf{T}} = (\det I_n) \times (\det I_n) = 1$$

$$\det\begin{pmatrix} I_n + C\overline{C} & -C \\ 0_n & I_n \end{pmatrix} = \left(\det\left(I_n + C\overline{C} \right) \right) \times (\det I_n) = \det\left(I_n + C\overline{C} \right)$$

Ainsi, on a bien:

$$\det\left(C_{0}\right) = \det\left(I_{n} + C\overline{C}\right)$$

PSI* septembre 2023

Q6. Si $M_{(e_1,e_2)}(\varphi) = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$, on a:

$$\begin{cases} \varphi(e_1) = re_1 + te_2 \\ \varphi(e_2) = se_1 + ue_2 \end{cases} \Leftrightarrow \begin{cases} \varphi(e_2) = ue_2 + se_1 \\ \varphi(e_1) = te_2 + re_1 \end{cases}$$

Donc:

$$M_{(e_2,e_1)}(\varphi) = \begin{pmatrix} u & t \\ s & r \end{pmatrix}$$

Q7. On considère $R, S, T, U \in \mathcal{M}_n(\mathbb{C})$ avec $R = (r_{i,j}), S = (s_{i,j}), T = (t_{i,j}), U = (u_{i,j})$.

Soit $\varphi \in \mathcal{L}(\mathbb{C}^{2n})$ l'endomorphisme de \mathbb{C}^{2n} canoniquement associé à $\begin{pmatrix} R & S \\ T & U \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$ et $\mathcal{B}_c = (e_1, \dots, e_{2n})$ la base canonique de \mathbb{C}^{2n} . On a :

$$\begin{cases} \varphi(e_j) = \sum_{i=1}^n r_{i,j} e_i + \sum_{i=1}^n t_{i,j} e_{n+i} & \text{pour } 1 \le j \le n \\ \varphi(e_j) = \sum_{i=1}^n s_{i,j} e_i + \sum_{i=1}^n u_{i,j} e_{n+i} & \text{pour } n+1 \le j \le 2n \end{cases} \Leftrightarrow \begin{cases} \varphi(e_j) = \sum_{i=1}^n u_{i,j} e_{n+i} + \sum_{i=1}^n s_{i,j} e_i & \text{pour } n+1 \le j \le 2n \\ \varphi(e_j) = \sum_{i=1}^n t_{i,j} e_{n+i} + \sum_{i=1}^n r_{i,j} e_i & \text{pour } 1 \le j \le n \end{cases}$$

Si on note \mathcal{B}_1 la base $(e_{n+1}, \dots, e_{2n}, e_1, \dots, e_n)$ de \mathbb{C}^{2n} , on a alors :

$$M_{\mathcal{B}_1}(\varphi) = \begin{pmatrix} U & T \\ S & R \end{pmatrix}.$$

Ainsi, $\begin{pmatrix} R & S \\ T & U \end{pmatrix}$ et $\begin{pmatrix} U & T \\ S & R \end{pmatrix}$ représentent le même endomorphisme dans deux bases différentes, donc :

$$\begin{pmatrix} R & S \\ T & U \end{pmatrix} \text{ et } \begin{pmatrix} U & T \\ S & R \end{pmatrix} \text{ sont semblables.}$$

On a aussi:

$$\begin{cases} \varphi(e_j) = \sum_{i=1}^n r_{i,j} e_i + \sum_{i=1}^n (-t_{i,j})(-e_{n+i}) & \text{pour } 1 \le j \le n \\ \varphi(-e_j) = -\varphi(e_j) = \sum_{i=1}^n (-s_{i,j}) e_i + \sum_{i=1}^n u_{i,j}(-e_{n+i}) & \text{pour } n+1 \le j \le 2n \end{cases}$$

Si on note \mathcal{B}_2 la base $(e_1,\ldots,e_n,-e_{n+1},\ldots,-e_{2n})$ de $\mathbb{C}^{2n},$ on a alors :

$$M_{\mathcal{B}_2}(\varphi) = \begin{pmatrix} R & -S \\ -T & U \end{pmatrix}.$$

Ainsi, $\begin{pmatrix} R & S \\ T & U \end{pmatrix}$ et $\begin{pmatrix} R & -S \\ -T & U \end{pmatrix}$ représentent le même endomorphisme dans deux bases différentes, donc :

$$\begin{pmatrix} R & S \\ T & U \end{pmatrix} \text{ et } \begin{pmatrix} R & -S \\ -T & U \end{pmatrix} \text{ sont semblables.}$$

Q8. Notons $\chi_{C_0} = \det(XI_{2n} - C_0)$

D'après la question précédente, les matrices $C_0 = \begin{pmatrix} I_n & -C \\ \overline{C} & I_n \end{pmatrix}, \begin{pmatrix} I_n & \overline{C} \\ -C & I_n \end{pmatrix}$ et $\begin{pmatrix} I_n & -\overline{C} \\ C & I_n \end{pmatrix} = \overline{C}_0$ sont semblables, donc il existe $P \in GL_{2n}(\mathbb{C})$ telle que $\overline{C}_0 = P^{-1}C_0P$ et :

$$\chi_{\overline{C}_0} = \det(X I_{2n} - \overline{C}_0) = \det(X I_{2n} - P^{-1} C_0 P)$$

$$= \det(X P^{-1} P - P^{-1} C_0 P) = \det(P^{-1} (X I_{2n} - C_0) P) = \det(X I_{2n} - C_0) = \chi_{C_0}$$

Ainsi, $\chi_{\bar{C}_0} = \chi_{C_0}$.

Or, d'après la question Q2:

$$\chi_{\overline{C}_0} = \det\left(XI_{2n} - \overline{C}_0\right) = \det\left(\overline{XI_{2n} - C_0}\right) = \overline{\det\left(XI_{2n} - C_0\right)} = \overline{\chi_{C_0}}.$$

Finalement, on a $\chi_{\overline{c}_0}=\chi_{C_0}=\overline{\chi_{C_0}}$, ce qui permet de conclure que :

Le polynôme
$$\chi_{C_0} = \det(X I_{2n} - C_0)$$
 est à coefficients réels.

Q9. Soit
$$\begin{pmatrix} X \\ Y \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{C})$$
.

a) On a:

$$\begin{split} &C_0\Omega\!\left(\!\begin{pmatrix} X \\ Y \end{pmatrix}\!\right) \!=\! \begin{pmatrix} I_n & -C \\ \overline{C} & I_n \end{pmatrix}\!\!\left(\!\begin{matrix} -\overline{Y} \\ \overline{X} \end{matrix}\right) \!=\! \begin{pmatrix} -\overline{Y} - C\overline{X} \\ -C\overline{Y} + \overline{X} \end{pmatrix} \!=\! \begin{pmatrix} -C\overline{X} - \overline{Y} \\ \overline{X} - C\overline{Y} \end{pmatrix} \\ &\Omega\!\left(\!\begin{matrix} C_0 \begin{pmatrix} X \\ Y \end{pmatrix}\!\right) \!=\! \Omega\!\left(\!\begin{pmatrix} I_n & -C \\ \overline{C} & I_n \end{pmatrix}\!\!\left(\!\begin{matrix} X \\ Y \end{pmatrix}\!\right) \!=\! \Omega\!\left(\!\begin{pmatrix} X - CY \\ \overline{C}X + Y \end{pmatrix}\!\right) \!=\! \begin{pmatrix} -\overline{CX} + \overline{Y} \\ \overline{X} - C\overline{Y} \end{pmatrix} \end{split}$$

Donc:

$$C_0\Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right) = \Omega\left(C_0\begin{pmatrix} X \\ Y \end{pmatrix}\right)$$

b) De plus:

$$\Omega \circ \Omega \left(\begin{pmatrix} X \\ Y \end{pmatrix} \right) = \Omega \left(\begin{pmatrix} -\overline{Y} \\ \overline{X} \end{pmatrix} \right) = \begin{pmatrix} -\overline{\overline{X}} \\ -\overline{\overline{Y}} \end{pmatrix} = -\begin{pmatrix} X \\ Y \end{pmatrix}$$

Ceci étant vrai pour tout $\begin{pmatrix} X \\ Y \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{C})$, on a bien :

$$\Omega \circ \Omega = -id_{\mathcal{M}_{2n,1}(\mathbb{C})}$$

c) Enfin, pour tout $\lambda \in \mathbb{C}$:

$$\Omega\left(\lambda \begin{pmatrix} X \\ Y \end{pmatrix}\right) = \Omega\left(\begin{pmatrix} \lambda X \\ \lambda Y \end{pmatrix}\right) = \begin{pmatrix} -\overline{\lambda}\overline{Y} \\ \overline{\lambda}\overline{X} \end{pmatrix} = \begin{pmatrix} -\overline{\lambda}\overline{Y} \\ \overline{\lambda}\overline{X} \end{pmatrix} = \overline{\lambda} \begin{pmatrix} -\overline{Y} \\ \overline{X} \end{pmatrix} = \overline{\lambda} \Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right).$$

Ainsi:

$$\Omega\left(\lambda \begin{pmatrix} X \\ Y \end{pmatrix}\right) = \overline{\lambda} \Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right)$$

PSI* septembre 2023

Q10. Soit
$$\begin{pmatrix} X \\ Y \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{C}) \text{ avec } \begin{pmatrix} X \\ Y \end{pmatrix} \neq \begin{pmatrix} 0_{n,1} \\ 0_{n,1} \end{pmatrix}$$
.

Soient $\lambda, \mu \in \mathbb{C}$ tels que $\lambda \begin{pmatrix} X \\ Y \end{pmatrix} + \mu \Omega \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0_{n,1} \\ 0_{n,1} \end{pmatrix}$. On a alors:

$$\lambda \begin{pmatrix} X \\ Y \end{pmatrix} + \mu \begin{pmatrix} -\overline{Y} \\ \overline{X} \end{pmatrix} = \begin{pmatrix} \lambda X - \mu \overline{Y} \\ \lambda Y + \mu \overline{X} \end{pmatrix} = \begin{pmatrix} 0_{n,1} \\ 0_{n,1} \end{pmatrix} \iff \begin{cases} \lambda X - \mu \overline{Y} = 0_{n,1} \\ \mu \overline{X} + \lambda Y = 0_{n,1} \end{cases} \iff \begin{cases} \lambda X - \mu \overline{Y} = 0_{n,1} & (1) \\ \overline{\mu} X + \overline{\lambda} \overline{Y} = 0_{n,1} & (2) \end{cases}$$

En effectuant $\overline{\lambda}(1) + \mu(2)$, on obtient $(|\lambda|^2 + |\mu|^2)X = 0_{n,1}$, et en effectuant $-\overline{\mu}(1) + \lambda(2)$, on obtient $(|\lambda|^2 + |\mu|^2)\overline{Y} = 0_{n,1}$. Comme $\begin{pmatrix} X \\ Y \end{pmatrix} \neq \begin{pmatrix} 0_{n,1} \\ 0_{n,1} \end{pmatrix}$, on a $\begin{pmatrix} X \\ \overline{Y} \end{pmatrix} \neq \begin{pmatrix} 0_{n,1} \\ 0_{n,1} \end{pmatrix}$. Alors, $|\lambda|^2 + |\mu|^2 = 0$ et donc $\lambda = \mu = 0$. Ainsi:

La famille
$$\begin{pmatrix} X \\ Y \end{pmatrix}$$
, $\Omega \begin{pmatrix} X \\ Y \end{pmatrix}$ est libre.

Notons $Z_1 = \begin{pmatrix} X \\ Y \end{pmatrix}$, $Z_2 = \Omega \begin{pmatrix} X \\ Y \end{pmatrix}$ et $P = \text{Vect}(Z_1, Z_2)$.

On a $\Omega(Z_1) = Z_2 \in P$ et $\Omega(Z_2) = \Omega \circ \Omega(Z_1) = -Z_1 \in P$, et donc :

$$\operatorname{Vect}\left(\begin{pmatrix} X \\ Y \end{pmatrix}, \Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right)\right)$$
 est stable par Ω .

Q11. On conserve les notations $Z_1 = \begin{pmatrix} X \\ Y \end{pmatrix}$, $Z_2 = \Omega \begin{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -\overline{Y} \\ \overline{X} \end{pmatrix}$ et $P = \text{Vect}(Z_1, Z_2)$.

Soit $Z \in E \cap P$. On a alors $Z = aZ_1 + bZ_2 = \begin{pmatrix} aX - b\overline{Y} \\ aY + b\overline{X} \end{pmatrix}$, avec $a, b \in \mathbb{C}$.

Comme E et P sont tous deux stables par Ω , on a aussi $\Omega(Z) \in E \cap P$. Et:

$$\Omega(Z) = \Omega\left(\begin{pmatrix} aX - b\overline{Y} \\ aY + b\overline{X} \end{pmatrix}\right) = \begin{pmatrix} -\overline{aY} + b\overline{X} \\ \overline{aX} - \overline{bY} \end{pmatrix} = \begin{pmatrix} -\overline{a}\overline{Y} - \overline{b}X \\ \overline{a}\overline{X} - \overline{b}Y \end{pmatrix} = \overline{a}\begin{pmatrix} -\overline{Y} \\ \overline{X} \end{pmatrix} - \overline{b}\begin{pmatrix} X \\ Y \end{pmatrix} = \overline{a}Z_2 - \overline{b}Z_1.$$

Alors $\overline{a}Z - b\Omega(Z) = \left(\left|a\right|^2 + \left|b\right|^2\right)Z_1 \in E$ (car E est stable par combinaisons linéaires) et si $\left|a\right|^2 + \left|b\right|^2 \neq 0$, alors $Z_1 \in E$, ce qui contredit l'hypothèse. Donc, $\left|a\right|^2 + \left|b\right|^2 = 0$, soit a = b = 0 et donc $Z = 0_{2n,1}$.

Finalement, on a bien:

$$E \cap \left[\operatorname{Vect} \left(\left(\begin{array}{c} X \\ Y \end{array} \right), \Omega \left(\left(\begin{array}{c} X \\ Y \end{array} \right) \right) \right) \right] = \left\{ 0_{2n,1} \right\}$$

Q12. Soit $\lambda \in Sp(C_0)$.

D'après la question **Q8**, $\chi_{C_0} = \det(XI_{2n} - C_0)$ est à coefficients réels, donc si λ est racine de χ_{C_0} , $\overline{\lambda}$ l'est aussi, autrement dit:

$$\overline{\lambda} \in Sp(C_0)$$

D'après la question **Q9**, on a pour tout $Z \in \mathcal{M}_{2n,1}(\mathbb{C})$, $C_0\Omega(Z) = \Omega(C_0Z)$ et $\Omega(\lambda Z) = \overline{\lambda}\Omega(Z)$.

Prouvons par récurrence sur k que pour tout $k \in \mathbb{N}$, $C_0^k \Omega(Z) = \Omega(C_0^k Z)$.

- Pour k = 0, on a $C_0^0 = I_n$ donc $C_0^0 \Omega(Z) = \Omega(Z) = \Omega(C_0^0 Z)$ et la propriété est vraie au rang k = 0.
- Supposons la propriété vraie à un rang $k \in \mathbb{N}$. Alors, pour tout $Z \in \mathcal{M}_{2n,1}(\mathbb{C})$:

$$C_0^{k+1}\Omega(Z) = C_0\left(C_0^k\Omega(Z)\right) = C_0\left(\Omega\left(C_0^kZ\right)\right)$$
 par hypothèse de récurrence
$$= \Omega\left(C_0\left(C_0^kZ\right)\right)$$
 d'après la question **Q9**.a
$$= \Omega\left(C_0^{k+1}Z\right)$$

La propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}$.

Par linéarité de la conjugaison, on a pour tous $X,Y,X',Y' \in \mathcal{M}_{n,1}(\mathbb{C})$:

$$\Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} X \\ Y \end{pmatrix}\right) = \Omega\left(\begin{pmatrix} X + X \\ Y + Y \end{pmatrix}\right) = \left(\frac{-(\overline{Y + Y'})}{\overline{X} + X'}\right) = \left(\frac{-\overline{Y} - \overline{Y'}}{\overline{X} + \overline{X'}}\right) = \left(\frac{-\overline{Y}}{\overline{X}}\right) + \left(\frac{-\overline{Y}}{\overline{X}}\right) = \Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right) + \Omega\left(\begin{pmatrix} X \\ Y \end{pmatrix}\right).$$

Alors, avec la question **Q9**.c, on a pour tout $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{C}[X]$ et pour tout $Z \in \mathcal{M}_{2n,1}(\mathbb{C})$, on a :

$$\Omega(P(C_0)Z) = \Omega\left(\sum_{k=0}^p a_k C_0^k Z\right) = \sum_{k=0}^p \Omega(a_k C_0^k Z) = \sum_{k=0}^p \overline{a}_k \Omega(C_0^k Z)$$

$$= \sum_{k=0}^p \overline{a}_k C_0^k \Omega(Z) = \left(\sum_{k=0}^p \overline{a}_k C_0^k\right) \Omega(Z) = \overline{P}(C_0)\Omega(Z)$$

Avec $P = (\lambda - X)^{\alpha_{\lambda}}$, donc $\overline{P} = (\overline{\lambda} - X)^{\alpha_{\lambda}}$, on a pour tout $Z \in F_{\lambda} = \ker \left[(\lambda I_n - C_0)^{\alpha_{\lambda}} \right]$:

$$(\overline{\lambda}I_n - C_0)^{\alpha_{\lambda}} \Omega(Z) = \Omega((\lambda I_n - C_0)^{\alpha_{\lambda}} Z) = \Omega(0) = 0.$$

Donc, pour tout $Z \in F_{\lambda}$, $\Omega(Z) \in F_{\overline{\lambda}}$ et ainsi : $\Omega(F_{\lambda}) \subset F_{\overline{\lambda}}$.

On a de la même façon, $\Omega(F_{\overline{\lambda}}) \subset F_{\lambda}$ et donc $\Omega \circ \Omega(F_{\overline{\lambda}}) \subset \Omega(F_{\lambda})$. Or, d'après la question $\mathbf{Q9}.\mathbf{b}$, $\Omega \circ \Omega = -id_{\mathcal{M}_{2n,1}(\mathbb{C})}$. Comme $F_{\overline{\lambda}}$ est un sous-espace de $\mathcal{M}_{2n,1}(\mathbb{C})$, on a $-F_{\overline{\lambda}} = F_{\overline{\lambda}}$, d'où $\Omega \circ \Omega(F_{\overline{\lambda}}) = F_{\overline{\lambda}}$. Ainsi : $F_{\overline{\lambda}} \subset \Omega(F_{\lambda})$.

Finalement, on a bien:

$$\Omega(F_{\lambda}) = F_{\overline{\lambda}}$$

PSI* septembre 2023

Q13. Soit $\lambda \in Sp(C_0) \cap \mathbb{R}$, d'après la question précédente, $\Omega(F_1) = F_T = F_2$, donc F_2 est stable par Ω .

Soit $Z \in F_{\lambda} \setminus \{0_{2n+1}\}$. On a $\Omega(Z) \in F_{\lambda}$ et d'après la question **Q10**, $(Z, \Omega(Z))$ est libre. Ainsi, dim $F_{\lambda} \ge 2$.

Supposons que dim F_{λ} est impaire, soit dim $F_{\lambda} = 2p+1$ avec $p \in \mathbb{N}^*$.

Prouvons par récurrence sur k que pour tout $k \in \llbracket 1, p+1 \rrbracket$, il existe une famille (E_1, \ldots, E_k) de F_λ telle que $(E_1, \Omega(E_1), \ldots, E_k, \Omega(E_k))$ soit une famille libre de F_λ .

- On vient de faire l'initialisation pour k = 1.
- Supposons la propriété vraie à un rang $k \in [1, p]$.

Par hypothèse de récurrence, il existe une famille libre de F_{λ} de la forme $(E_1, \Omega(E_1), \dots, E_k, \Omega(E_k))$.

Notons $E = \text{Vect}(E_1, \Omega(E_1), \dots, E_k, \Omega(E_k))$. Comme $2k \le 2p < 2p + 1$, il existe $E_{k+1} \in F_{\lambda} \setminus E$.

Par stabilité de F_{λ} par Ω , on a $\Omega(E_{k+1}) \in F_{\lambda}$ et d'après la question **Q11**, on a :

$$E \cap \text{Vect}(E_{k+1}, \Omega(E_{k+1})) = \{0_{2n,1}\}.$$

Donc:

$$E + \operatorname{Vect}(E_{k+1}, \Omega(E_{k+1})) = E \oplus \operatorname{Vect}(E_{k+1}, \Omega(E_{k+1}))$$

$$= \operatorname{Vect}(E_1, \Omega(E_1), \dots, E_k, \Omega(E_k)) \oplus \operatorname{Vect}(E_{k+1}, \Omega(E_{k+1}))$$

Comme la famille $\left(E_1,\Omega(E_1),\ldots,E_k,\Omega(E_k)\right)$ est libre et $\left(E_{k+1},\Omega(E_{k+1})\right)$ aussi d'après **Q10**, la famille $\left(E_1,\Omega(E_1),\ldots,E_k,\Omega(E_k),E_{k+1},\Omega(E_{k+1})\right)$ est une famille libre de F_{λ} . Ceci prouve que la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire donc vraie pour tout $k \in [1, p]$.

En particulier, pour k=p+1, il existe $\left(E_1,\ldots,E_{p+1}\right)\in F_{\lambda}^p$ telle que $\left(E_1,\Omega(E_1),\ldots,E_{p+1},\Omega(E_{p+1})\right)$ soit une famille libre 2p+2 de F_{λ} . Ceci est absurde car entraine dim $F_{\lambda}\geq 2p+2>2p+1$.

Ainsi, supposer que $\dim F_{\lambda}$ est impaire aboutit à une absurdité et donc :

Quand
$$\lambda \in Sp(C_0) \cap \mathbb{R}$$
, dim F_{λ} est paire.

Q14. On a det $(XI_{2n} - C_0) = \prod_{\lambda \in S_n(C_n)} (X - \lambda)^{\alpha_{\lambda}}$ et, en évaluant en 0, on obtient :

$$\det\left(-C_0\right) = \prod_{\lambda \in Sp(C_n)} \left(-\lambda^{\alpha_{\lambda}}\right).$$

Or, $\det\left(-C_0\right) = (-1)^{2n} \det\left(C_0\right) = \det\left(C_0\right)$ et comme $\sum_{\lambda \in Sp(C_n)} \alpha_{\lambda} = \deg\left[\det\left(XI_{2n} - C_0\right)\right] = 2n$, on a :

$$\prod_{\lambda \in \mathit{Sp}(C_0)} \left(-\lambda^{\alpha_{\lambda}} \right) = \left(-1 \right)^{\sum_{\lambda \in \mathit{Sp}(C_0)} \alpha_{\lambda}} \prod_{\lambda \in \mathit{Sp}(C_0)} \lambda^{\alpha_{\lambda}} = \left(-1 \right)^{2n} \prod_{\lambda \in \mathit{Sp}(C_0)} \lambda^{\alpha_{\lambda}} = \prod_{\lambda \in \mathit{Sp}(C_0)} \lambda^{\alpha_{\lambda}} \; .$$

Ainsi, $\det(C_0) = \prod_{\lambda \in \operatorname{Sp}(C_0)} \lambda^{\alpha_{\lambda}}$ et d'après résultat admis, on a alors :

$$\det(C_0) = \prod_{\lambda \in Sp(C_0)} \lambda^{\dim F_{\lambda}}.$$

Comme $\Omega \circ \Omega = -id_{\mathcal{M}_{\bullet,\cdot}(\mathbb{C})}$, Ω est bijective (de réciproque $-\Omega$).

Attention cependant: $\Omega(\lambda Z) = \overline{\lambda}\Omega(Z)$, donc Ω n'est pas un endomorphisme de $\mathcal{M}_{2n,1}(\mathbb{C})$.

Pour tout $\lambda \in Sp(C_0)$, on a $\Omega(F_{\lambda}) = F_{\overline{\lambda}}$ et $\Omega(F_{\overline{\lambda}}) = F_{\lambda}$ d'après la question **Q12**.

Si $\mathcal{B} = (E_1, \dots, E_p)$ est une base de F_{λ} alors $\Omega(\mathcal{B})$ est génératrice de $F_{\overline{\lambda}}$ et pour tous $\beta_1, \dots, \beta_p \in \mathbb{C}$:

$$\beta_1 \Omega(E_1) + \ldots + \beta_p \Omega(E_p) = 0_{2n,1} \iff \Omega(\overline{\beta}_1 E_1 + \ldots + \overline{\beta}_p E_p) = 0_{2n,1} \iff \overline{\beta}_1 E_1 + \ldots + \overline{\beta}_p E_p = -\Omega(0_{2n,1}) = 0_{2n,1}.$$

Et comme $\mathcal{B} = (E_1, \dots, E_p)$ est libre, on a $\overline{\beta}_1 = \dots = \overline{\beta}_p = 0$, donc $\beta_1 = \dots = \beta_p = 0$ et ainsi, $\Omega(\mathcal{B})$ est libre.

Ceci permet de conclure que $\Omega(\mathcal{B})$ est une base de $F_{\overline{\lambda}}$ et donc que :

$$\dim F_{\lambda} = \dim F_{\overline{\lambda}}$$
.

On a:

$$Sp(C_0) = (Sp(C_0) \cap \mathbb{R}) \cup \{\lambda \in Sp(C_0) \setminus Im(\lambda) > 0\} \cup \{\overline{\lambda} \setminus \lambda \in Sp(C_0), Im(\lambda) > 0\}.$$

Et cette union est disjointe, donc :

$$\begin{split} \det \left(C_0 \right) &= \prod_{\lambda \in \mathit{Sp}(C_0) \cap \mathbb{R}} \lambda^{\dim F_{\lambda}} \prod_{\lambda \in \mathit{Sp}(C_0), \, \mathrm{Im}(\lambda) > 0} \lambda^{\dim F_{\lambda}} \overline{\lambda}^{\dim F_{\overline{\lambda}}} \\ &= \prod_{\lambda \in \mathit{Sp}(C_0) \cap \mathbb{R}} \lambda^{\dim F_{\lambda}} \prod_{\lambda \in \mathit{Sp}(C_0), \, \mathrm{Im}(\lambda) > 0} \lambda^{\dim F_{\lambda}} \overline{\lambda}^{\dim F_{\lambda}} \\ &= \prod_{\lambda \in \mathit{Sp}(C_0) \cap \mathbb{R}} \lambda^{\dim F_{\lambda}} \prod_{\lambda \in \mathit{Sp}(C_0), \, \mathrm{Im}(\lambda) > 0} \left| \lambda \right|^{2\dim F_{\lambda}} \end{split}$$

D'après la question précédente, dim F_{λ} est paire, donc quand $\lambda \in Sp(C_0) \cap \mathbb{R}$, on a $\lambda^{\dim F_{\lambda}} \in \mathbb{R}_+$ et:

$$\prod_{\lambda \in Sp(C_0) \cap \mathbb{R}} \lambda^{\dim F_{\lambda}} \in \mathbb{R}_+.$$

On a aussi $|\lambda|^{\dim F_{\lambda}} \in \mathbb{R}_+$ quand $\lambda \in Sp(C_0) \setminus \mathbb{R}$, donc:

$$\prod_{\lambda \in \mathit{Sp}(C_0), \, \operatorname{Im}(\lambda) > 0} \left| \lambda \right|^{2 \dim F_{\lambda}} \in \mathbb{R}_+^*$$

Ainsi:

$$\det(C_0) \in \mathbb{R}_+$$
.

Finalement, comme $\det(C_0) = \det(I_n + C\overline{C})$, on a bien :

$$\det\left(I_{n}+C\bar{C}\right)\in\mathbb{R}_{+}$$