Corrigés des TD en plus du chapitre 4

Exercice 1

Posons $g(x) = x + \ln(1-x)$.

La fonction g est dérivable sur [0,1] en tant que somme de telles fonctions et pour tout $x \in [0,1]$:

$$g'(x) = 1 - \frac{1}{1 - x} = -\frac{x}{1 - x} \le 0$$
.

Ainsi, g est décroissante sur [0,1].

Pour tout entier $n \ge 2$ et tout $t \in [0,1]$, on a $\frac{t}{n}, \frac{1}{n} \in [0,1[$ et $0 \le \frac{t}{n} \le \frac{1}{n}$, donc :

$$g\left(\frac{1}{n}\right) \le g\left(\frac{t}{n}\right) \le g(0) \quad \Leftrightarrow \quad \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) \le \frac{t}{n} + \ln\left(1 - \frac{t}{n}\right) \le 0 \quad \Leftrightarrow \quad e^{\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)} \le e^{\frac{t}{n} + \ln\left(1 - \frac{t}{n}\right)} = e^{\frac{t}{n}} \left(1 - \frac{t}{n}\right) \le 1.$$

Comme $e^{\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)} > 0$, en élevant à la puissance n, on obtient pour tout $t \in [0,1]$:

$$e^{1+n\ln\left(1-\frac{1}{n}\right)} \leq e^t \left(1-\frac{t}{n}\right)^n \leq 1 \quad \Longleftrightarrow \quad 0 \leq 1-e^t \left(1-\frac{t}{n}\right)^n \leq a_n = 1-e^{1+n\ln\left(1-\frac{1}{n}\right)}.$$

Donc, pour tout $x \in [0,1]$:

$$0 \le \int_0^x \left[1 - e^t \left(1 - \frac{t}{n} \right)^n \right] dt \le \int_0^x a_n dt.$$

Or, $\int_0^x a_n dt = a_n x \le a_n$ et:

$$\int_{0}^{x} \left[1 - e^{t} \left(1 - \frac{t}{n} \right)^{n} \right] dt = \int_{0}^{x} dt - \int_{0}^{x} e^{t} \left(1 - \frac{t}{n} \right)^{n} dt = x - f_{n}(x).$$

On obtient alors pour tout $x \in [0,1]$:

$$|f_n(x) - x| = x - f_n(x) \le a_n.$$

D'où:

$$\sup_{x \in [0,1]} \left| f_n(x) - x \right| \le a_n.$$

Enfin, on a:

$$\lim_{n \to +\infty} e^{1+n\ln\left(1-\frac{1}{n}\right)} = \lim_{n \to +\infty} e^{1+n\left[-\frac{1}{n}+o\left(\frac{1}{n}\right)\right]} = \lim_{n \to +\infty} e^{o(1)} = 1 \quad \Rightarrow \quad \lim_{n \to +\infty} a_n = 0.$$

Ceci prouve que:

La suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1] vers $x\mapsto x$.

Exercice 2

Posons g = |f|. On a $f \in C(\mathbb{R}_+, \mathbb{C})$, f est non nulle et $f(0) = \lim_{x \to +\infty} f(x) = 0$, donc $g \in C(\mathbb{R}_+, \mathbb{R}_+)$, g est non nulle et $g(0) = \lim_{x \to +\infty} g(x) = 0$.

Comme g n'est pas nulle, il existe $a \in \mathbb{R}_+$ tel que $f(a) \neq 0$, soit |f(a)| > 0.

• g est continue en 0 avec $\lim_{x\to 0} g(x) = g(0) = 0$, donc il existe $x_0 \ge 0$ tel que pour tout $x \in [0, x_0]$:

$$g(x) \le \frac{1}{2} g(a).$$

• On a $\lim_{x \to +\infty} g(x) = 0$, donc il existe $x_1 \in \mathbb{R}_+$ tel que pour tout $x \in [x_1, +\infty[$:

$$g(x) \le \frac{1}{2} g(a).$$

Alors, pour tout $x \in [0, x_0] \cup [x_1, +\infty[$, $g(x) \le \frac{1}{2}g(a)$, donc $g(x) \ne g(a)$ et $a \notin [0, x_0] \cup [x_1, +\infty[$. Ceci permet de conclure que $x_0 < x_1$ et $a \in [x_0, x_1]$.

La fonction g est continue et positive sur \mathbb{R}_+ , donc sur $[x_0, x_1] \subset \mathbb{R}_+$, g admet un maximum M tel que $M \ge g(a) > 0$. Enfin, comme $g(x) \le \frac{1}{2} g(a) < g(a) \le M$ pour tout $x \in [0, x_0] \cup [x_1, +\infty[$, on a :

$$M = \max_{\mathbb{R}} g = \max_{\mathbb{R}} |f|.$$

1) Pour tout $n \in \mathbb{N}^*$, $f_n(0) = g_n(0) = f(0) = 0$, donc $(f_n(0))_{n \in \mathbb{N}^*}$ et $(g_n(0))_{n \in \mathbb{N}^*}$ convergent vers 0.

Pour tout $x \in \mathbb{R}_+^*$:

- $\lim_{n \to +\infty} nx = +\infty$ \Rightarrow $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} f(nx) = \lim_{X \to +\infty} f(X) = 0$;
- $\lim_{n \to +\infty} \frac{x}{n} = 0$ $\Rightarrow \lim_{n \to +\infty} g_n(x) = \lim_{n \to +\infty} f\left(\frac{x}{n}\right) = \lim_{x \to 0} f(0) = f(0) = 0$ (ca f est continue en 0).

Ainsi, pour tout $x \in \mathbb{R}_+$, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} g_n(x) = 0$ et donc :

Les suites $(f_n)_{n \in \mathbb{N}^*}$ et $(g_n)_{n \in \mathbb{N}^*}$ convergent simplement vers la fonction nulle.

Mais, pour tout $n \in \mathbb{N}^*$, nx et $\frac{x}{n}$ décrivent \mathbb{R}_+ quand x décrit \mathbb{R}_+ , donc :

$$||f_n||_{\infty} = \sup_{x \in \mathbb{R}_+} |f_n(x)| = \sup_{x \in \mathbb{R}_+} |f(nx)| = \sup_{X \in \mathbb{R}_+} |f(X)| = \max_{X \in \mathbb{R}_+} |f(X)| = M$$

$$\|g_n\|_{\infty} = \sup_{x \in \mathbb{R}_+} |g_n(x)| = \sup_{x \in \mathbb{R}_+} \left| f\left(\frac{x}{n}\right) \right| = \sup_{X \in \mathbb{R}_+} \left| f(X) \right| = \max_{X \in \mathbb{R}_+} \left| f(X) \right| = M$$

Donc, les suites $(\|f_n\|_{\infty})_{n\in\mathbb{N}^*}$ et $(\|g_n\|_{\infty})_{n\in\mathbb{N}^*}$ sont définies mais ne convergent pas vers 0, et ainsi :

Les suites $(f_n)_{n \in \mathbb{N}^*}$ et $(g_n)_{n \in \mathbb{N}^*}$ ne convergent pas uniformément vers la fonction nulle.

2) Soit $\varepsilon \in \mathbb{R}_{+}^{*}$.

Comme $\lim_{x\to 0} f(x) = \lim_{x\to +\infty} f(x) = 0$, il existe $(\alpha, A) \in (\mathbb{R}_+^*)^2$ tel que pour tout $t \in [0, \alpha] \cup [A, +\infty[$, $|f(t)| \le \varepsilon$.

Soit $n \in \mathbb{N}^*$ tel que $n \ge N = E\left(\frac{A}{\alpha}\right) + 1 > \frac{A}{\alpha}$ (donc $n\alpha > A$). Pour tout $x \in \mathbb{R}_+$:

- si $x \le \alpha$, alors $\frac{x}{n} \le x \le \alpha$, donc $|f_n(x)g_n(x)| = |f(nx)| |f(\frac{x}{n})| \le M\varepsilon$;
- si $x > \alpha$, alors $nx > n\alpha > A$, donc $|f_n(x)g_n(x)| = |f(nx)| |f(\frac{x}{n})| \le \varepsilon M$.

Ainsi, pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $N \in \mathbb{N}^*$ tel que pour tout entier $n \ge N$ et tout $x \in \mathbb{R}_+$, $|f_n(x)g_n(x)| \le M\varepsilon$.

Ceci prouve que $\lim_{n \to +\infty} ||f_n g_n||_{\infty} = 0$, donc:

La suite $(f_n g_n)_{n \in \mathbb{N}^*}$ converge uniformément sur \mathbb{R}_+ vers la fonction nulle.

Exercice 3

On pose $f_n(x) = \frac{e^{-nx}}{n^2}$.

1) Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$, $|f_n(x)| = f_n(x) \le \frac{1}{n^2}$. Comme la série $\sum \frac{1}{n^2}$ converge, la série de fonctions $\sum f_n$ converge uniformément sur \mathbb{R}_+ . Or, pour tout $n \in \mathbb{N}^*$, f_n est continue sur \mathbb{R}_+ , donc :

f est définie et continue sur \mathbb{R}_+ .

Pour tout $n \in \mathbb{N}^*$, f_n est de classe C^2 sur \mathbb{R}_+ avec $f_n'(x) = -\frac{e^{-nx}}{n}$ et $f_n''(x) = e^{-nx}$.

Soit $a \in \mathbb{R}_{+}^{*}$. Pour tout $x \in [a, +\infty[$, on a:

$$|f_n'(x)| = \frac{e^{-nx}}{n} \le e^{-na}$$
 et $|f_n''(x)| = e^{-nx} \le e^{-na}$.

Comme la série géométrique $\sum e^{-na}$ converge (car de raison $e^{-a} \in]0,1[$), les séries $\sum f_n$ ' et $\sum f_n$ " convergent normalement donc uniformément sur $[a,+\infty[$. Alors, f est de classe C^2 sur $[a,+\infty[$.

Ceci étant vrai pour tout $a \in \mathbb{R}_+^*$:

$$f$$
 est de classe C^2 sur \mathbb{R}_+^* .

2) On a $f(0) = \sum_{n \ge 1} \frac{1}{n^2}$, donc pour tout $x \in \mathbb{R}_+^*$:

$$\frac{f(x) - f(0)}{x} = \sum_{n \ge 1} \frac{1}{n} \frac{e^{-nx} - 1}{nx}.$$

Or, pour tout $t \in \mathbb{R}_+^*$:

$$-t \le e^{-t} - 1 \le -t + \frac{t^2}{2}$$
 (1).

En effet, si on pose $h(t) = e^{-t} - 1 + t - \frac{t^2}{2}$, la fonction h est deux fois dérivable sur \mathbb{R}_+ , avec pour tout $t \in \mathbb{R}_+$, $h'(t) = -e^{-t} + 1 - t$ et $h''(t) = e^{-t} - 1 \le 0$.

Donc, h' est décroissante sur \mathbb{R}_+ avec h'(0) = 0, ce qui permet de conclure que $h'(t) = -e^{-t} + 1 - t \le 0$, soit :

$$-t \le e^{-t} - 1.$$

Alors, h est décroissante sur \mathbb{R}_+ avec h(0) = 0, donc $h(t) = e^{-t} - 1 + t - \frac{t^2}{2} \le 0$, soit :

$$e^{-t}-1 \le -t + \frac{t^2}{2}$$
.

A l'aide de (1), on peut conclure que pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$:

$$\frac{1}{n}\frac{e^{-nx}-1}{nx} \le -\frac{1}{n} + \frac{x}{2}.$$

Donc, pour tout $N \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$:

$$\sum_{n=1}^{N} \frac{1}{n} \frac{e^{-nx} - 1}{nx} \le -\sum_{n=1}^{N} \frac{1}{n} + N \frac{x}{2}.$$

Enfin, comme pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$, $\frac{1}{n} \frac{e^{-nx} - 1}{nx} \le 0$, on a :

$$\sum_{n=N+1}^{+\infty} \frac{1}{n} \frac{e^{-nx} - 1}{nx} \le 0 \quad \Rightarrow \quad \frac{f(x) - f(0)}{x} \le \sum_{n=1}^{N} \frac{1}{n} \frac{e^{-nx} - 1}{nx}.$$

Et, pour tout $N \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$:

$$\frac{f(x) - f(0)}{x} \le -\sum_{n=1}^{N} \frac{1}{n} + N\frac{x}{2}.$$

Or, $\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n} = +\infty$ (la série harmonique diverge), donc pour tout réel A > 0, il existe $N \in \mathbb{N}^*$ tel que :

$$\sum_{n=1}^{N} \frac{1}{n} \ge A + 1.$$

Alors, pour tout $x \in \mathbb{R}_+^*$ tel que $x \le \alpha = \frac{2}{N}$, soit $N \frac{x}{2} \le 1$, on a :

$$\frac{f(x)-f(0)}{r} \le -A-1+1 = -A.$$

Ainsi, pour tout réel A > 0, il existe $\alpha \in \mathbb{R}_+^*$ tel que pour tout $x \in \mathbb{R}_+^*$ tel que $x \le \alpha$, $\frac{f(x) - f(0)}{x} \le -A$.

Ceci prouve que $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = -\infty$ et donc que :

f n'est pas dérivable en 0.

3) D'après la question 1, f est de classe C^2 sur \mathbb{R}_+^* avec pour tout $x \in \mathbb{R}_+^*$:

$$f''(x) = \sum_{n=1}^{+\infty} f_n''(x) = \sum_{n=1}^{+\infty} e^{-nx} = \sum_{n=1}^{+\infty} (e^{-x})^n = \frac{e^{-x}}{1 - e^{-x}}.$$

Et, f' étant de classe C^1 sur \mathbb{R}_+^* , il existe $K \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}_+^*$:

$$f'(x) = \sum_{n=1}^{+\infty} f_n'(x) = \int_0^x f''(t) dt + K = \int_0^x \frac{e^{-t}}{1 - e^{-t}} dt + K = \ln(1 - e^{-x}) + K$$

Toujours d'après la question 1, $\sum f_n$ ' converge uniformément sur $[1,+\infty[$. De plus, pour tout $n \in \mathbb{N}^*$,

$$\lim_{x \to +\infty} f_n'(x) = \lim_{x \to +\infty} \left(-\frac{e^{-nx}}{n} \right) = 0, \text{ donc}:$$

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} \sum_{n=1}^{+\infty} f_n'(x) = \sum_{n=1}^{+\infty} \lim_{x \to +\infty} f_n'(x) = 0.$$

Or, $\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} \left[\ln (1 - e^{-x}) + K \right] = K$, donc K = 0 et ainsi, pour tout $x \in \mathbb{R}_+^*$:

$$f''(x) = \frac{e^{-x}}{1 - e^{-x}}$$
 et $f'(x) = \ln(1 - e^{-x})$.

Comme f est de classe C^1 sur \mathbb{R}_+^* , on a immédiatement pour tout $x \in \mathbb{R}_+^*$, $f(x) - f(1) = \int_1^x f'(t) dt$, soit :

$$f(x) = f(1) + \int_{1}^{x} \ln(1 - e^{-t}) dt$$

Exercice 4

- 1) Pour tout $n \in \mathbb{N}^*$, f_n et définie sur \mathbb{R} et :
 - $f_n(0) = 0$, donc $\sum f_n(0)$ converge;
 - pour tout $x \in \mathbb{R}^*$, $f_n(x) = \frac{x}{n(1+nx^2)} \sim \frac{1}{n^2x}$, donc $\sum f_n(x)$ converge (car la série $\sum \frac{1}{n^2x}$ est à termes de signe constant et convergente).

Ainsi:

La fonction
$$f$$
 est définie sur $\mathbb R$.

2) Soit $x \in \mathbb{R}_+^*$ et $g_x : t \mapsto \frac{x}{t(1+tx^2)}$. La fonction g_x est continue, positive et décroissante sur $[1, +\infty[$, on peut donc utiliser la comparaison série intégrale qui donne pour tout $n \in \mathbb{N}^*$:

$$g_x(n) + \int_1^n g_x(t) dt \le \sum_{k=1}^n g_x(k) \le g_x(1) + \int_1^n g_x(t) dt$$
.

Avec $g_x(n) = \frac{x}{n(1+nx^2)} = f_n(x)$, on obtient pour tout $n \in \mathbb{N}^*$:

$$f_n(x) + \int_1^n g_x(t) dt = \frac{x}{n(1+nx^2)} + \int_1^n g_x(t) dt \le \sum_{k=1}^n f_k(x) \le f_1(x) + \int_1^n g_x(t) dt = \frac{x}{1+x^2} + \int_1^n g_x(t) dt.$$

Et:

$$\int_{1}^{n} g_{x}(t) dt = \int_{1}^{n} \frac{x}{t(1+tx^{2})} dt = x \int_{1}^{n} \left[\frac{1}{t} - \frac{x^{2}}{1+tx^{2}} \right] dt = \left[\ln \left(\frac{t}{1+tx^{2}} \right) \right]_{1}^{n}$$

$$= \ln \left(\frac{n}{1+nx^{2}} \right) - \ln \left(\frac{1}{1+x^{2}} \right) = \ln (1+x^{2}) - \ln \left(x^{2} + \frac{1}{n} \right)$$

Donc, $\lim_{n \to +\infty} \int_{1}^{n} g_{x}(t) dt = \ln(1+x^{2}) - 2\ln x$ et comme $\lim_{n \to +\infty} \frac{x}{n(1+nx^{2})} = 0$ et $\lim_{n \to +\infty} \sum_{k=1}^{n} f_{k}(x) = f(x)$, on obtient :

$$\ln(1+x^2) - 2\ln x \le f(x) \le \frac{x}{1+x^2} + \ln(1+x^2) - 2\ln x.$$

Soit, pour 0 < x < 1:

$$1 - \frac{\ln(1+x^2)}{2\ln x} \le \frac{f(x)}{-2\ln x} \le 1 - \frac{1}{2\ln x} \left(\frac{x}{1+x^2} + \ln(1+x^2) \right).$$

Avec $\lim_{x \to 0} \frac{\ln(1+x^2)}{2\ln x} = \lim_{x \to 0} \frac{1}{2\ln x} \left(\frac{x}{1+x^2} + \ln(1+x^2) \right) = 0$, le théorème des gendarmes donc $\lim_{x \to 0} \frac{f(x)}{-2\ln x} = 1$, soit:

$$f(x) \underset{x \to 0^{+}}{\sim} -2\ln x$$

3) Pour tout $n \in \mathbb{N}^*$, $f_n : x \mapsto \frac{x}{n(1+nx^2)}$ est continue sur \mathbb{R} (car définie et rationnelle).

Alors, si $\sum f_n$ converge uniformément sur $\mathbb R$, alors $f=\sum_{n\geq 1}f_n$ est continue sur $\mathbb R$. Or :

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[-2\ln x \right] = +\infty \neq 0 = f(0).$$

Donc, f n'est pas continue en 0 et ainsi :

La convergence de $\sum f_n$ n'est pas uniforme sur $\mathbb R$.

Exercice 5

Pour tout $n \in \mathbb{N}^*$, f_n est définie sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f_n(x) = \frac{x}{n^{x^2-1}}$.

Notons D l'ensemble maximal tel que $\sum f_n(x)$ converge pour tout x de D.

Pour tout $n \in \mathbb{N}^*$, $f_n(0) = 0$, donc $\sum f_n(0)$ converge.

De plus, la série de Riemann $\sum \frac{1}{n^{x^2-1}}$ converge si et seulement si $x^2-1>1$, soit $x^2>2$, donc $\sum f_n(x)$ converge pour tout x de $\left]-\infty,-\sqrt{2}\left[\bigcup\right]\sqrt{2},+\infty\right[$ et diverge quand $x^2\leq 2$ et $x\neq 0$.

Ainsi:

$$D = \left] - \infty, -\sqrt{2} \left[\bigcup \{0\} \bigcup \right] \sqrt{2}, +\infty \right[$$

Soit $x \in \left] \sqrt{2}, +\infty \right[$. La fonction $t \mapsto \frac{x}{t^{x^2-1}}$ est continue, positive et décroissante sur $[1, +\infty[$, on peut donc utiliser la comparaison série intégrale qui donne pour tous $n, p \in \mathbb{N}^*$:

$$\sum_{k=n}^{n+p} \frac{x}{(k+1)^{x^2-1}} \le \int_{n}^{n+p+1} \frac{x}{t^{x^2-1}} dt \le \sum_{k=n}^{n+p} \frac{x}{k^{x^2-1}}.$$

Soit:

$$\sum_{k=n+1}^{n+p+1} \frac{x}{k^{x^2-1}} \le \frac{x}{x^2 - 2} \left(\frac{1}{n^{x^2-2}} - \frac{x}{(n+p+1)^{x^2-2}} \right) \le \frac{x}{n^{x^2-1}} + \sum_{k=n+1}^{n+p} \frac{x}{k^{x^2-1}}.$$

Et en faisant tendre p vers $+\infty$, on obtient :

$$\sum_{k=n+1}^{+\infty} f_k(x) \le \frac{x}{x^2 - 2} \frac{1}{n^{x^2 - 2}} \le \frac{x}{n^{x^2 - 1}} + \sum_{k=n+1}^{+\infty} f_k(x) \quad \Rightarrow \quad \left| \sum_{k=1}^{n} f_k(x) - f(x) \right| = \sum_{k=n+1}^{+\infty} f_k(x) \ge \frac{x}{x^2 - 2} \frac{1}{n^{x^2 - 2}} - \frac{x}{n^{x^2 - 1}}.$$

Or, quand $x \to \sqrt{2}^+$, $\frac{x}{x^2 - 2} \frac{1}{n^{x^2 - 2}} - \frac{x}{n^{x^2 - 1}} \to +\infty$, donc $\left| \sum_{k=1}^n f_k(x) - f(x) \right|$ n'est pas majoré sur $\left| \sqrt{2} \right| + \infty$, donc $\left| \sum_{k=1}^n f_k(x) - f(x) \right|$ n'est pas majoré sur $\left| \sqrt{2} \right| + \infty$, donc $\left| \sum_{k=1}^n f_k(x) - f(x) \right|$ n'est pas majoré sur $\left| \sqrt{2} \right| + \infty$.

La série $\sum f_n$ ne converge pas uniformément sur D.

Remarquons que D est symétrique par rapport à 0, et pour tout $x \in D$, f(-x) = -f(x), donc f est impaire.

Soit $[a,b] \subset \sqrt{2}, +\infty$. Pour tout $x \in [a,b]$ et tout $n \in \mathbb{N}^*$, on a :

$$|f_n(x)| = \frac{|x|}{n^{x^2-1}} \le \frac{b}{n^{a^2-1}}.$$

Comme $[a,b] \subset \left] \sqrt{2}, +\infty \right[$, on a $a^2-1>1$, donc $\sum \frac{b}{n^{a^2-1}}$ converge.

Ainsi, $\sum f_n$ converge normalement sur [a,b] et, comme pour tout $n \in \mathbb{N}^*$, f_n est continue sur [a,b], $\sum f_n$ est continue sur [a,b]. Ceci étant vrai pour tout $[a,b] \subset \left] \sqrt{2} , +\infty \right[$, $\sum f_n$ est continue sur $\left] \sqrt{2} , +\infty \right[$ et comme f est impaire :

$$f$$
 est continue sur $D = \left] - \infty, -\sqrt{2} \left[\bigcup \right] \sqrt{2}, +\infty \right[$.

Exercice 6

1) Posons $f_n(x) = \frac{1}{n+n^2x} = \frac{1}{n(1+nx)}$. Pour $n \in \mathbb{N}^*$, la fonction f_n est définie et continue sur $\mathbb{R} \setminus \left\{-\frac{1}{n}\right\}$.

On a $f_n(0) = \frac{1}{n}$, donc $\sum f_n(0)$ diverge et pour tout $x \in \mathbb{R}^* \setminus \left\{-\frac{1}{n}\right\}$, $f_n(x) \underset{n \to +\infty}{\sim} \frac{1}{n^2 x}$ et la série $\sum \frac{1}{n^2 x}$ est à termes de signe constant et converge, donc :

La fonction
$$f$$
 est définie sur $D = \mathbb{R}^* \setminus \left\{ -\frac{1}{n}, n \in \mathbb{N}^* \right\}$.

Soit deux réels a et b tels que a < b.

• Si 0 < a < b, on a $x \in [a,b] \subset \mathbb{R}_+^* \subset D$ et tout $n \in \mathbb{N}^*$, $0 < f_n(x) \le \frac{1}{n+n^2a} \le \frac{1}{n^2a}$ et $\sum \frac{1}{n^2a}$ converge, donc $\sum f_n$ converge normalement sur [a,b].

• S'il existe $N \in \mathbb{N}^*$ tel que $-\frac{1}{N} < a < b < -\frac{1}{N+1} < 0$, on a $[a,b] \subset \left] -\frac{1}{N}, -\frac{1}{N+1} \right[\subset D$ et, pour tout $x \in [a,b]$ et tout $n \in \mathbb{N}^*$, $0 < |f_n(x)| \le \min\left(\left|\frac{1}{n+n^2a}\right|, \left|\frac{1}{n+n^2b}\right|\right) \le \min\left(\frac{1}{n^2|a|}, \frac{1}{n^2|b|}\right)$ et $\sum \frac{1}{n^2|a|}$ et $\sum \frac{1}{n^2|b|}$ convergent, donc $\sum f_n$ converge normalement sur [a,b].

Ainsi, $\sum f_n$ converge normalement sur tout segment inclus dans D, et f_n est continue sur D pour tout $n \in \mathbb{N}^*$, donc, f est continue sur tout segment inclus dans D, ce qui permet de conclure que :

La fonction f est continue sur D.

2) Soit $x \in \mathbb{R}_+^*$ et $g_x : t \mapsto \frac{1}{t + t^2 x}$. La fonction g_x est continue, positive et décroissante sur $[1, +\infty[$, on peut donc utiliser la comparaison série intégrale qui donne pour tout $n \in \mathbb{N}^*$:

$$g_x(n) + \int_1^n g_x(t) dt \le \sum_{k=1}^n g_x(k) \le g_x(1) + \int_1^n g_x(t) dt$$
.

Avec $g_x(n) = \frac{1}{n+n^2x} = f_n(x)$, on obtient pour tout $n \in \mathbb{N}^*$:

$$f_n(x) + \int_1^n g_x(t) dt = \frac{1}{n + n^2 x} + \int_1^n g_x(t) dt \le \sum_{k=1}^n f_k(x) \le f_1(x) + \int_1^n g_x(t) dt = \frac{1}{1 + x} + \int_1^n g_x(t) dt.$$

Et:

$$\int_{1}^{n} g_{x}(t) dt = \int_{1}^{n} \frac{dt}{t + t^{2}x} = \int_{1}^{n} \left[\frac{1}{t} - \frac{x}{1 + xt} \right] dt = \left[\ln t - \ln (1 + xt) \right]_{1}^{n}$$
$$= \ln \left(\frac{n}{1 + xn} \right) - \ln \left(\frac{1}{1 + x} \right) = \ln (1 + x) - \ln \left(x + \frac{1}{n} \right)$$

Donc, $\lim_{n \to +\infty} \int_{1}^{n} g_{x}(t) dt = \ln(1+x) - \ln x$ et comme $\lim_{n \to +\infty} \frac{1}{n+n^{2}x} = 0$ et $\lim_{n \to +\infty} \sum_{k=1}^{n} f_{k}(x) = f(x)$, on obtient :

$$\ln(1+x) - \ln x \le f(x) \le \frac{1}{1+x} + \ln(1+x) - \ln x.$$

Soit, pour 0 < x < 1:

$$1 - \frac{\ln(1+x)}{\ln x} \le \frac{f(x)}{-\ln x} \le 1 - \frac{1}{\ln x} \left(\frac{1}{1+x} + \ln(1+x) \right).$$

Avec $\lim_{x\to 0} \frac{\ln(1+x)}{\ln x} = \lim_{x\to 0} \frac{1}{\ln x} \left(\frac{1}{1+x} + \ln(1+x)\right) = 0$, le théorème des gendarmes donc $\lim_{x\to 0} \frac{f(x)}{-\ln x} = 1$, soit :

$$\int f(x) \sim -\ln x$$

Quand $x \to +\infty$, on a $f_n(x) \sim \frac{1}{n^2 x}$, on peut alors conjecturer que $f(x) \sim \sum_{x \to +\infty} \frac{1}{n^2 x} = \frac{\pi^2}{6x}$.

On a pour tout $x \in \mathbb{R}_+^*$ et tout $n \in \mathbb{N}^*$:

$$\left| x f(x) - \frac{\pi^2}{6} \right| = \left| \sum_{n \ge 1} \frac{x}{n + n^2 x} - \sum_{n \ge 1} \frac{1}{n^2} \right| = \left| \sum_{n \ge 1} \left(\frac{x}{n + n^2 x} - \frac{1}{n^2} \right) \right| = \left| \sum_{n \ge 1} \frac{-n}{n^2 (n + n^2 x)} \right| = \sum_{n \ge 1} \frac{1}{n^2 + n^3 x}.$$

Et, toujours pour tout $x \in \mathbb{R}_+^*$ et tout $n \in \mathbb{N}^*$, on a $\frac{1}{n^2 + n^3 x} \le \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$ converge, donc $\sum \frac{1}{n^2 + n^3 x}$ converge normalement sur \mathbb{R}_+^* . Comme pour tout $n \in \mathbb{N}^*$, $\lim_{x \to +\infty} \frac{1}{n^2 + n^3 x} = 0$, on peut écrire :

$$\lim_{x \to +\infty} \left| x f(x) - \frac{\pi^2}{6} \right| = \lim_{x \to +\infty} \sum_{n \ge 1} \frac{1}{n^2 + n^3 x} = \sum_{n \ge 1} \lim_{x \to +\infty} \frac{1}{n^2 + n^3 x} = 0.$$

Ceci prouve que l'on a bien :

$$f(x) \underset{x \to +\infty}{\sim} \frac{\pi^2}{6x}$$

Exercice 7

Soit $x \in \mathbb{R}$.

- Si x > 0, alors $f_n(x) = o_{n \to +\infty}(e^{-nx})$ et la série géométrique $\sum e^{-nx}$ converge, donc $\sum f_n(x)$ converge.
- Si x = 0, $\lim_{n \to +\infty} f_n(0) = 1$ et si x < 0, $\lim_{n \to +\infty} f_n(x) = +\infty$, donc $\sum f_n(x)$ diverge grossièrement.

Ainsi:

$$f$$
 est définie sur \mathbb{R}_{+}^{*} .

Pour tout $n \in \mathbb{N}$, f_n est de classe C^{∞} sur \mathbb{R}_+^* en tant que quotient de telles fonctions.

Soient $n \in \mathbb{N}$ et $k \in \mathbb{N}$. Posons $g_n : x \mapsto e^{-nx}$ et $h_n : x \mapsto 1 + nx$. Ces deux fonctions sont C^{∞} sur \mathbb{R} avec $g_n^{(k)} : x \mapsto (-n)^k e^{-nx}$, $h_n' : x \mapsto n$ et $h_n^{(k)} = 0$ quand $k \ge 2$.

On a $h_n f_n = g_n$ et avec la formule de Leibniz, on obtient pour tout $x \in \mathbb{R}_+^*$ et pour $k \ge 1$:

$$\sum_{i=0}^{k} {k \choose i} h_n^{(i)}(x) f_n^{(k-i)}(x) = g_n^{(k)}(x) \iff (1+nx) f_n^{(k)}(x) + kn f_n^{(k-1)}(x) = (-n)^k e^{-nx}.$$

Ceci implique que pour tout $x \in \mathbb{R}_+^*$, tout $n \in \mathbb{N}$ et $k \in \mathbb{N}^*$:

$$\left| f_n^{(k)}(x) \right| = \left| \frac{(-n)^k}{1 + nx} e^{-nx} - k \frac{n}{1 + nx} f_n^{(k-1)}(x) \right| \le n^k e^{-nx} + k \left| f_n^{(k-1)}(x) \right|.$$

Soient $a \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$. Notons $\|\varphi\|_{\infty} = \sup_{x \in [a, +\infty[} |\varphi|$.

Pour tout $x \in [a, +\infty[$:

$$|f_n(x)| = f_n(x) = \frac{e^{-nx}}{1+nx} \le e^{-na}$$

Donc, $||f_n||_{\infty}$ existe et $||f_n||_{\infty} = o(e^{-na/2})$.

Supposons que pour $k \in \mathbb{N}^*$, $\|f_n^{(k-1)}\|_{\infty}$ existe et $\|f_n^{(k-1)}\|_{\infty} = o(e^{-na/2})$.

Pour tout $x \in [a, +\infty[$:

$$\left| f_n^{(k)}(x) \right| \le n^k e^{-nx} + k \left| f_n^{(k-1)}(x) \right| \le n^k e^{-na} + k \left\| f_n^{(k-1)} \right\|_{\infty}$$

Donc $\|f_n^{(k)}\|_{\infty}$ existe et:

$$\|f_n^{(k)}\|_{\infty} \le n^k e^{-na} + k \|f_n^{(k-1)}\|_{\infty}.$$

Or, $n^k e^{-na} = o_{n \to +\infty}(e^{-na/2})$, donc avec $\|f_n^{(k-1)}\|_{\infty} = o_{n \to +\infty}(e^{-na/2})$, on obtient pour tout $x \in [a, +\infty[$:

$$||f_n^{(k)}||_{\infty} = o(e^{-na/2}).$$

Ceci prouve par récurrence que pour tout $n \in \mathbb{N}$ et tout $k \in \mathbb{N}^*$:

$$||f_n^{(k)}||_{\infty}$$
 existe et $||f_n^{(k)}||_{\infty} = o(e^{-na/2})$.

Or, la série la série géométrique $\sum e^{-na/2}$ converge, donc $\sum \|f_n^{(k)}\|_{\infty}$ converge et ainsi, pour tout $a \in \mathbb{R}_+^*$ et tout $k \in \mathbb{N}^*$, $\sum_{n \geq 0} f_n^{(k)}$ converge normalement, donc uniformément sur $[a, +\infty[$.

Ceci prouve que f est de classe C^{∞} sur $[a,+\infty[$. Ceci étant vrai pour tout $a\in\mathbb{R}_{+}^{*}$:

$$f$$
 est de classe C^{∞} sur \mathbb{R}_{+}^{*} .

Exercice 8

1) Posons $f_n(x) = \frac{(-1)^n}{x+n}$. Pour tout entier $n \ge 2$, la fonction f_n est définie et continue sur $\mathbb{R} \setminus \{-n\}$.

Et pour tout $x \in \mathbb{R} \setminus \{-n, n \in \mathbb{N}, n \ge 2\}$, $(|f_n(x)|)_{n \ge 2}$ décroit à partir d'un certain rang et converge vers 0, donc la série $\sum (-1)^n |f_n(x)|$ vérifie le critère spécial des séries alternées, donc converge.

Ainsi:

La fonction
$$f$$
 est définie sur $D = \mathbb{R} \setminus \{-n, n \in \mathbb{N}, n \ge 2\}$.

2) Remarquons déjà que $]-1,1[\subset D]$ et que pour tout entier $n \ge 2$, f_n est de classe C^{∞} sur]-1,1[(c'est une fonction rationnelle) avec pour tout $k \in \mathbb{N}$ et pour tout $x \in]-1,1[$, $f_n^{(k)}(x) = (-1)^n \frac{(-1)^k k!}{(x+n)^{k+1}}$.

On a alors pour $n \ge 2$ (donc n-1>0) et pour $x \in]-1,1[$:

$$\left| f_n^{(k)}(x) \right| \le \frac{k!}{(n-1)^{k+1}}.$$

Or, pour tout $k \in \mathbb{N}^*$, la série de Riemann $\sum \frac{1}{n^{k+1}}$ converge (car $k+1 \ge 2$), donc $\sum \frac{k!}{(n-1)^{k+1}}$ converge et ainsi, $\sum f_n^{(k)}$ vérifie l'hypothèse de domination sur]-1,1[, pour tout $k \in \mathbb{N}^*$. Alors, $\sum f_n^{(k)}$ converge normalement, donc uniformément sur]-1,1[.

Comme $\sum f_n$ converge simplement sur]-1,1[, on peut conclure que :

$$f$$
 est de classe C^{∞} sur $]-1,1[$.

3) D'après la question précédente, on a de plus pour tout $x \in]-1,1[$:

$$f'(x) = \sum_{n \ge 2} \frac{(-1)^{n+1}}{(x+n)^2} = \sum_{p \ge 1} \left[\frac{(-1)^{2p+1}}{(x+2p)^2} + \frac{(-1)^{2p+2}}{(x+2p+1)^2} \right] = -\sum_{p \ge 1} \frac{(x+2p+1)^2 - (x+2p)^2}{(x+2p)^2}.$$

Or, pour tout $p \in \mathbb{N}^*$ et tout $x \in]-1,1[$, on a 1 < x + 2p < x + 2p + 1, donc $\frac{(x+2p+1)^2 - (x+2p)^2}{(x+2p)^2} > 0$.

Ainsi, f'(x) < 0 et donc f est strictement décroissante sur]-1,1[.

De plus, comme $\sum f_n(x)$ vérifie le critère spécial des séries alternées, on a pour tout $n \ge 2$ et tout $x \in]-1,1[$:

$$\left| \sum_{k \ge n+1} \frac{(-1)^k}{x+k} \right| \le \frac{1}{x+n+1} < \frac{1}{n}.$$

Comme $\frac{1}{n} \to 0$, $\sum f_n$ converge uniformément sur]-1,1[, donc :

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \left(\sum_{n \ge 2} \frac{(-1)^{n}}{x+n} \right) = \sum_{n \ge 2} \lim_{x \to -1^{+}} \frac{(-1)^{n}}{x+n} = \sum_{n \ge 2} \frac{(-1)^{n}}{n-1} = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} = \ln 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(\sum_{n \ge 2} \frac{(-1)^{n}}{x+n} \right) = \sum_{n \ge 2} \lim_{x \to 1^{-}} \frac{(-1)^{n}}{x+n} = \sum_{n \ge 2} \frac{(-1)^{n}}{n+1} = \sum_{n \ge 3} \frac{(-1)^{n+1}}{n} = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} - 1 + \frac{1}{2} = \ln 2 - \frac{1}{2}$$

On obtient ainsi le tableau :

4) Soit $x \in]-1,1[$ fixé.

Pour tout $N \in \mathbb{N}$ et tout entier $n \ge 2$:

$$\frac{1}{x+n} = \frac{1}{n} \frac{1}{1+\frac{x}{n}} = \frac{1}{n} \sum_{k=0}^{N} \left(-\frac{x}{n}\right)^{k} + \frac{1}{n} \frac{\left(-\frac{x}{n}\right)^{N+1}}{1+\frac{x}{n}} = \frac{1}{n} \sum_{k=0}^{N} \left(-\frac{x}{n}\right)^{k} + \frac{1}{x+n} \left(-\frac{x}{n}\right)^{N+1}.$$

Donc:

$$f(x) = \sum_{n \ge 2} \frac{(-1)^n}{x+n} = \sum_{n \ge 2} (-1)^n \left[\frac{1}{n} \sum_{k=0}^N \left(-\frac{x}{n} \right)^k + \frac{1}{x+n} \left(-\frac{x}{n} \right)^{N+1} \right] = \sum_{n \ge 2} \left[\frac{(-1)^n}{n} + \sum_{k=1}^N \frac{(-1)^{n+k}}{n^{k+1}} x^k + \frac{(-1)^n}{x+n} \left(-\frac{x}{n} \right)^{N+1} \right].$$

Or, la série harmonique alternée $\sum \frac{(-1)^n}{n}$ converge et pour tout $k \ge 1$, la série $\sum \left| \frac{(-1)^{n+k}}{n^{k+1}} x^k \right| = \sum \frac{\left| x \right|^k}{n^{k+1}}$ converge, donc $\sum \frac{(-1)^{n+k}}{n^{k+1}} x^k$ converge absolument donc converge. Ceci implique que $\sum \frac{1}{x+n} \left(-\frac{x}{n} \right)^{N+1}$ converge, avec :

$$f(x) - \sum_{k=0}^{N} \left(\sum_{n \ge 2} \frac{(-1)^{n+k}}{n^{k+1}} \right) x^k = \sum_{n \ge 2} \frac{(-1)^{n+N+1}}{x+n} \frac{x^{N+1}}{n^{N+1}}.$$

De plus, pour tout $x \in]-1,1[$, tout $N \in \mathbb{N}$ et tout entier $n \ge 2$:

$$\left| \frac{(-1)^{n+N+1}}{x+n} \frac{x^{N+1}}{n^{N+1}} \right| = \frac{1}{x+n} \frac{|x|^{N+1}}{n^{N+1}} \le \frac{1}{n-1} \frac{1}{n} |x|^{N+1}.$$

Et $\sum_{n\geq 2} \frac{1}{n-1} \frac{1}{n} = \sum_{n\geq 2} \left(\frac{1}{n-1} - \frac{1}{n} \right) = 1$, donc, pour tout $x \in]-1,1[$ et tout $N \in \mathbb{N}$:

$$\left| f(x) - \sum_{k=0}^{N} \left(\sum_{n \ge 2} \frac{(-1)^{n+k}}{n^{k+1}} \right) x^k \right| = \left| \sum_{n \ge 2} \frac{(-1)^{n+N+1}}{x+n} \frac{x^{N+1}}{n^{N+1}} \right| \le \sum_{n \ge 2} \frac{1}{n-1} \frac{1}{n} |x|^{N+1} = |x|^{N+1}.$$

Enfin, comme $\lim_{N \to +\infty} |x|^{N+1} = 0$ (car |x| < 1), le théorème des gendarmes donne :

$$\lim_{N \to +\infty} \left| f(x) - \sum_{k=0}^{N} \left(\sum_{n \ge 2} \frac{(-1)^{n+k}}{n^{k+1}} \right) x^{k} \right| = 0.$$

Ainsi, pour tout $x \in]-1,1[$, $f(x) = \sum_{k=0}^{+\infty} a_k x^k$ avec $a_k = \sum_{n\geq 2} \frac{(-1)^{n+k}}{n^{k+1}}$ pour tout $k \in \mathbb{N}$, et donc:

f est développable en série entière sur]-1,1[.