PSI* novembre 2023

DM de Mathématiques n° 5

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et $u \in \mathcal{L}(E)$.

Dans ce sujet, on appelle matrice de type $\mathcal N$ toute matrice de $\mathcal M_n(\mathbb K)$ de la forme $\begin{pmatrix} 0 & \varepsilon_1 & 0 & \cdots & 0 \\ 0 & 0 & \varepsilon_2 & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \varepsilon_{n-1} \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}$

avec $\varepsilon_k \in \{0;1\}$ pour tout $k \in [1, n-1]$.

Partie I – Réduction des endomorphismes nilpotentes

Dans cette partie, on suppose que u est nilpotent d'indice $p \in \mathbb{N}^*$ (l'indice de nilpotence est la plus petite puissance qui annule u).

- 1) Soit *x* un vecteur non nul de *E*. On pose $C_u(x) = \text{Vect}(u^k(x), k \in \mathbb{N})$.
 - a. Montrer que $C_u(x)$ est stable par u.
 - b. Montrer qu'il existe un entier $p(x) \in \mathbb{N}^*$ tel que $C_u(x) = \operatorname{Vect}(x, u(x), u^2(x), \dots, u^{p(x)-1}(x))$ et que $\dim C_u(x) = p(x)$.
 - c. Que valent $C_u(x)$ et p(x) quand $x \in \ker u$?
 - d. En général, que vaut $C_u(x) \cap \ker u$?
- 2) Prouver que $\operatorname{Im} u$ est stable par u, puis que \tilde{u} , l'endomorphisme induit par u sur $\operatorname{Im} u$, est nilpotent. Préciser son indice de nilpotence.
- 3) Démontrer par récurrence sur $p \in \mathbb{N}^*$ qu'il existe des vecteurs x_1, \dots, x_q de E (avec $q \in \mathbb{N}^*$) tels que $E = C_u(x_1) \oplus \dots \oplus C_u(x_q)$.
 - \odot On pourra appliquer l'hypothèse de récurrence à \tilde{u} , défini dans la question 2.
- 4) Montrer que dans une base de E bien choisie, la matrice de u est une matrice de type \mathcal{N} .

Partie II - Réduction de Jordan

Dans cette partie, on ne suppose plus que u est nilpotent, mais on suppose que son polynôme caractéristique est scindé sur \mathbb{K} .

On note $Sp(u) = \{\lambda_1, ..., \lambda_r\}$ le spectre de u, et pour tout $k \in [1, r]$, n_k la multiplicité de λ_k et on pose $F_k = \ker \left[\left(u - \lambda_k i d_E \right)^{n_k} \right]$.

On admet le lemme de décomposition des noyaux qui dit que si un polynôme $P \in \mathbb{K}[X]$ s'écrit $P = P_1 P_2 ... P_r$ où les P_k sont des polynômes de $\mathbb{K}[X]$ sans racine réelle ou complexe commune deux à deux, alors $\ker(P(u)) = \ker(P_1(u)) \oplus \ker(P_2(u)) \oplus ... \oplus \ker(P_r(u))$.

- 5) Justifier que pour tout $k \in [1, r]$, F_k est stable par u et que si on note u_k l'endomorphisme induit par u sur F_k , alors $u_k \lambda_k id_{F_k}$ est nilpotent.
- 6) Montrer qu'il existe une base de E dans laquelle la matrice de u est de la forme D+N où D est une matrice diagonale et N est une matrice de type \mathcal{N} .