Chapitre 19 : Espaces préhilbertiens réels et euclidiens

Programme officiel PCSI

a) Produit scalaire

Produit scalaire.

Espace préhilbertien, espace euclidien.

Produit scalaire canonique sur \mathbb{R}^n .

Produit scalaire $\langle f, g \rangle = \int_{a}^{b} fg \operatorname{sur} \mathscr{C}([a, b], \mathbb{R}).$

Notations $\langle x, y \rangle$, (x|y), $x \cdot y$.

Expression $X^{\top}Y$.

Exemples de produits scalaires intégraux sur $\mathbb{R}[X]$ et $\mathscr{C}([a,b],\mathbb{R})$.

b) Norme associée à un produit scalaire

Norme associée à un produit scalaire, distance.

Inégalité de Cauchy-Schwarz, cas d'égalité.

Inégalité triangulaire, cas d'égalité.

Identité remarquable $||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$.

Exemples: sommes finies, intégrales.

Formule de polarisation associée.

c) Orthogonalité

Vecteurs orthogonaux, orthogonal d'une partie.

Famille orthogonale, orthonormée (ou orthonormale).

Toute famille orthogonale de vecteurs non nuls est libre.

Théorème de Pythagore.

Algorithme d'orthonormalisation de Gram-Schmidt.

Notation X^{\perp} .

L'orthogonal d'une partie est un sous-espace.

d) Bases orthonormées

Existence de bases orthonormées dans un espace euclidien. Théorème de la base orthonormée incomplète. Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormée.

e) Projection orthogonale sur un sous-espace de dimension finie

Supplémentaire orthogonal d'un sous-espace F de dimension finie. Projection orthogonale sur F. Expression du projeté orthogonal d'un vecteur x dans une base orthonormée de F.

Distance d'un vecteur à F.

Le projeté orthogonal de x sur F est l'unique élément de F qui réalise la distance de x à F.

En dimension finie : dimension de F^{\perp} , vecteur normal à un hyperplan.

Notation d(x, F).

Plan du résumé

I – Produit scalaire

- 1. Définition
- 2. Inégalité de Cauchy-Schwarz
- 3. Norme euclidienne
 - a. Définition
 - b. Distance associée à une norme
 - c. Identités de polarisation
- 4. Espaces préhilbertiens réels et espaces euclidiens

II – Orthogonalité

- 1. Vecteurs orthogonaux, vecteurs unitaires
- 2. Sous-espaces vectoriels orthogonaux
- 3. Procédé d'orthonormalisation de Gram-Schmidt
- 4. Bases orthonormales
- 5. Produit scalaire et formes linéaires

III – Projections orthogonales

- 1. Projection orthogonale
- 2. Distance à un sous-espace vectoriel

Résumé

Dans tout ce chapitre, E est un espace vectoriel sur $\mathbb R$.

I – Produit scalaire

1. Définition

Définition:

On appelle <u>produit scalaire</u> sur E toute application ϕ de E^2 dans $\mathbb R$ vérifiant les quatre propriétés suivantes :

• φ est bilinéaire : $\forall (x, x', y, y') \in E^4$ et $\forall (\lambda, \mu) \in \mathbb{R}^2$:

$$\phi(\lambda x + \mu x', y) = \lambda \phi(x, y) + \mu \phi(x', y) \text{ et } \phi(x, \lambda y + \mu y') = \lambda \phi(x, y) + \mu \phi(x, y').$$

- φ est symétrique : $\forall (x,y) \in E^2$, $\varphi(x,y) = \varphi(y,x)$.
- φ est positive : $\forall x \in E, \varphi(x,x) \ge 0$.
- φ est définie : $\forall x \in E, \varphi(x,x) = 0 \iff x = 0.$

Notations: On note souvent $\varphi(x,y) = (x \mid y)$ ou $\langle x \mid y \rangle$ ou $\langle x,y \rangle$.

Exemples fondamentaux:

- 1) Dans \mathbb{R}^n , $(x | y) = x_1 y_1 + x_2 y_2 + ... + x_n y_n$ avec $x = (x_1, x_2, ..., x_n)$ et $y = (y_1, y_2, ..., y_n)$. En identifiant \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$, on a $(X | Y) = X^T Y$.
- 2) Dans $C([a,b], \mathbb{R})$, $(f | g) = \int_a^b fg$.
- 3) Dans $\mathbb{R}[X]$, $(P \mid Q) = \int_0^1 PQ$.

2. Inégalité de Cauchy-Schwarz

Propriété:

Si E est muni d'un produit scalaire $(\cdot|\cdot)$, alors pour tout $(x,y) \in E^2$, on a :

$$|(x | y)| \le \sqrt{(x | x)(y | y)}$$
.

Et on a égalité si et seulement si la famille (x, y) est liée.

3. Norme euclidienne

a. Définition:

Définition:

On appelle <u>norme</u> sur E toute application N de E dans \mathbb{R}_+ vérifiant les trois propriétés suivantes :

- $\forall x \in E \text{ et } \forall \lambda \in \mathbb{R}, \ N(\lambda x) = |\lambda| \ N(x) \text{ (homogénéité)};$
- $\forall x \in E, N(x) = 0 \Leftrightarrow x = 0$;
- $\forall (x,y) \in E^2$, $N(x+y) \le N(x) + N(y)$ (inégalité triangulaire).

Théorème et définition:

Si E est muni d'un produit scalaire $(\cdot|\cdot)$, alors l'application $x \mapsto \sqrt{(x|x)}$ est une norme sur E, appelée norme euclidienne associée au produit scalaire.

b. <u>Distance associée à une norme</u>:

Définition:

Si E est muni d'une norme N. L'application d de E^2 dans \mathbb{R}_+ définie, pour tout $(x,y) \in E^2$, par d(x,y) = N(x-y) est appelée <u>distance associée à la norme N</u>.

Si de plus, N est une norme euclidienne, on dit que d est une distance euclidienne.

Propriétés:

Si d est une distance sur E associée à une norme N, on a, \forall $(x,y,z) \in E^3$:

- d(x, y) = d(y, x) (symétrie).
- $d(x, y) = 0 \Leftrightarrow x = y$ (séparation).
- $d(x,z) \le d(x,y) + d(y,z)$ (inégalité triangulaire).

c. Identités de polarisation :

Propriétés:

Si E est muni d'un produit scalaire $(\cdot|\cdot)$ de norme associée $\|\cdot\|$, on a pour tout $(x,y) \in E^2$:

- $\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2(x \mid y)$.
- $\|x y\|^2 = \|x\|^2 + \|y\|^2 2(x \mid y)$.
- $||x + y||^2 ||x y||^2 = 4(x | y).$
- $\|x + y\|^2 + \|x y\|^2 = 2(\|x\|^2 + \|y\|^2)$ (identité du parallélogramme).
- $\left\| \frac{1}{2} (x+y) \right\|^2 = \frac{1}{4} \left(2 \|x\|^2 + 2 \|y\|^2 \|x-y\|^2 \right)$ (théorème de la médiane).

4. Espaces préhilbertiens réels et espaces euclidiens

Définitions:

Un espace préhilbertien réel est un \mathbb{R} -espace vectoriel muni d'un produit scalaire.

Si de plus, cet espace est de dimension finie, alors c'est un espace euclidien.

II - Orthogonalité

Dans ce qui suit, sauf mention contraire, E est un espace préhilbertien réel.

On note $(\cdot|\cdot)$ le produit scalaire et $\|\cdot\|$ la norme euclidienne associée.

1. Vecteurs orthogonaux, vecteurs unitaires

Définitions:

Deux vecteurs x et y de E sont orthogonaux si $(x \mid y) = 0$, on note alors $x \perp y$.

Un vecteur x de E est dit unitaire s'il est de norme 1.

Une famille F de vecteurs de E est <u>orthogonale</u> si pour tous $x, x' \in F$ tels que $x \ne x'$, on a $(x \mid x') = 0$ (autrement dit si tous les vecteurs sont orthogonaux deux à deux).

Une famille de vecteurs de E est <u>orthonormale ou orthonormée</u> si elle est orthogonale et si tous ses vecteurs sont unitaires.

Propriété:

Toute famille orthogonale de vecteurs non nuls de E est libre.

Propriété: Relation de Pythagore.

Si $(x_1, x_2, ..., x_p)$ est une famille orthogonale de vecteurs de E, alors :

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_p\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_p\|^2$$
.

Et, dans le cas de deux vecteurs, la réciproque est vraie : si $\|x + y\|^2 = \|x\|^2 + \|y\|^2$ alors $x \perp y$.

2. Sous-espaces vectoriels orthogonaux

Définitions:

Soient F et G deux sev de E. On dit que F et G sont <u>orthogonaux</u> si pour tout $(x, y) \in F \times G$, $(x \mid y) = 0$.

Si A est une partie non vide de E, l'ensemble $\{x \in E \setminus \forall a \in A, (a \mid x) = 0\}$ est appelé <u>orthogonal de A,</u> noté A^{\perp} .

Propriétés:

- $E^{\perp} = \{0\}$ et $\{0\}^{\perp} = E$.
- $F \perp G \Leftrightarrow F \subset G^{\perp} \Leftrightarrow G \subset F^{\perp}$.

Si A est une partie non vide de E.

- A^{\perp} est un sev de E.
- Si B est une autre partie de E telle que $A \subset B$, alors $B^{\perp} \subset A^{\perp}$.
- $A \subset (A^{\perp})^{\perp}$
- $A^{\perp} = (\text{Vect } A)^{\perp}$.
- $A \cap A^{\perp}$ est vide si A ne contient pas 0 et réduit à $\{0\}$ sinon.

3. Procédé d'orthonormalisation de Gram-Schmidt

<u>Propriété</u>: Procédé ou algorithme d'orthonormalisation de Gram-Schmidt.

Si $(f_1, f_2, ..., f_n)$ est une famille libre de E, alors il existe une famille orthonormée de E, $(e_1, e_2, ..., e_n)$ telle que pour tout $k \in [\![1, n]\!]$:

$$Vect(e_1, e_2, ..., e_k) = Vect(f_1, f_2, ..., f_k).$$

4. Bases orthonormales

Dans cette partie, E est euclidien de dimension n non nulle.

<u>Propriétés et définition</u>:

Toute famille orthogonale de n vecteurs non nuls de E est une base de E.

Toute famille orthonormée de n vecteurs de E est une base de E. Une telle famille est appelée <u>base</u> <u>orthonormale ou orthonormée</u> (b.o.n.) de E.

Théorème:

E possède des bases orthonormales et si $(e_1, e_2, ..., e_n)$ est une telle base, alors $\forall x \in E$:

$$x = (e_1 \mid x)e_1 + (e_2 \mid x)e_2 + ... + (e_n \mid x)e_n \quad \text{et} \quad ||x||^2 = (e_1 \mid x)^2 + (e_2 \mid x)^2 + ... + (e_n \mid x)^2.$$

<u>Théorème</u>: de la base orthonormée incomplète.

Toute famille orthonormale $(e_1, e_2, ..., e_p)$ peut être complétée en une base orthonormale de E.

Corollaires:

Soit F un sous-espace de E.

- $\dim F + \dim F^{\perp} = \dim E$.
- $F \oplus F^{\perp} = E$.
- $\bullet \quad (\mathbf{F}^{\perp})^{\perp} = \mathbf{F} \, .$

Notation: Si F et G sont deux sev tels que $F \perp G$, leur somme (directe) est notée $F \stackrel{\perp}{\oplus} G$.

5. Produit scalaire et formes linéaires

Ici encore, on prend E euclidien de dimension n.

Propriété:

Soit $f: E \to \mathbb{R}$.

On a $f \in \mathcal{L}(E,\mathbb{R})$ si et seulement s'il existe un unique vecteur a de E tel que pour tout $x \in E$:

$$f(x) = (a \mid x)$$
.

Autrement dit, toute forme linéaire sur E s'écrit de manière unique sous la forme $x \mapsto (a \mid x)$, où a est un vecteur fixé de E.

III - Projections orthogonales

Sauf mention contraire, dans cette partie comme dans la précédente, E est un espace préhilbertien réel et on note à nouveau $(\cdot|\cdot)$ le produit scalaire et $\|\cdot\|$ la norme euclidienne associée.

1. Projection orthogonale

Lemme:

Soit F un sev de E, de dimension finie et $\mathcal{B} = (e_1, e_2, ..., e_p)$ une base orthonormée de F.

Pour tout $x \in E$, on a:

$$x \in F^{\perp} \iff \forall i \in [1, p], (x \mid e_i) = 0.$$

Théorème et définition:

Soit F un sous-espace vectoriel de E, de dimension finie.

$$\forall x \in E, \exists! x_F \in F \text{ tel que } x - x_F \in F^{\perp}.$$

Le vecteur x_F est appelé <u>projeté orthogonal</u> de x sur F et l'application p_F de E dans E qui à x associe x_F est linéaire et est appelée <u>projection orthogonale sur F</u>.

Propriété:

Soient F un sev de dimension finie de E et p_F la projection orthogonale sur F. Si $(e_1, e_2, ..., e_p)$ est une base orthonormale de F, alors pour tout $x \in E$:

$$p_F(x) = (e_1 | x)e_1 + (e_2 | x)e_2 + ... + (e_p | x)e_p.$$

Propriétés:

Soient F un sev de E, de dimension finie.

- $F \oplus F^{\perp} = E$.

2. Distance à un sous-espace vectoriel

Propriété et définition :

Soient A une partie non vide de E et $x_o \in E$. L'ensemble $\{\|a - x_o\| \mid a \in A\}$ admet une borne inférieure appelée <u>distance de x_o à A</u>, notée $d(x_o, A)$.

Propriété:

Soient F un sev de E, de dimension finie et p_F la projection orthogonale sur F. Alors $\forall x \in E$, on a :

$$d(x,F) = ||x-p_F(x)||.$$