Corrigés des TD du chapitre 6

Exercice 1

1) Avec la formule de Grassmann, on a :

$$\dim(F+G+H) = \dim(F+G) + \dim H - \dim((F+G) \cap H).$$

Or:

$$\left. \begin{array}{ll} F \subset F + G & \Rightarrow & F \cap H \subset (F + G) \cap H \\ G \subset F + G & \Rightarrow & G \cap H \subset (F + G) \cap H \end{array} \right\} \quad \Rightarrow \quad F \cap H + G \cap H \subset (F + G) \cap H \; .$$

Donc:

$$\dim(F \cap H + G \cap H) \le \dim((F + G) \cap H).$$

Alors:

$$\dim(F+G+H) \ge \dim(F+G) + \dim H - \dim(F \cap H + G \cap H).$$

En utilisant à nouveau la formule de Grassmann pour évaluer $\dim(F+G)$ et $\dim(F\cap H+G\cap H)$, et avec $(F\cap H)\cap(G\cap H)=F\cap G\cap H$), on obtient :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

$$\dim(F \cap H + G \cap H) = \dim(F \cap H) + \dim(G \cap H) - \dim(F \cap G \cap H)$$

D'où:

$$\dim(F+G+H) \leq \dim F + \dim G + \dim H - \dim(F \cap G) - \dim(F \cap H) - \dim(G \cap H) + \dim(F \cap G \cap H)$$

2) On a par hypothèse $F = (F \cap G) \oplus F'$ et $G = (F \cap G) \oplus G'$.

Alors, $F \cap G' \subset (F \cap G) \cap G' = \{0\}$ et donc $F \cap G' = \{0\}$. D'où :

$$F + G' = F \oplus G' = (F \cap G) \oplus F' \oplus G'$$
.

La somme de $F \cap G$, F' et G' est directe.

De plus, on a:

$$F+G=\big((F\cap G)\oplus F'\big)+\big((F\cap G)\oplus G'\big)=F'+(F\cap G)+(F\cap G)+G'=(F\cap G)+F'+G'.$$

Et on vient de voir que la somme est directe, donc :

$$F + G = (F \cap G) \oplus F' \oplus G'$$

3) Soient H_1, H_2, \dots, H_{n-1} des hyperplans de E (tous de dimension n-1) On a :

$$\dim(H_1 \cap H_2) = \dim H_1 + \dim H_2 - \dim(H_1 + H_2) = 2(n-1) - \dim(H_1 + H_2).$$

Or, $\dim(H_1 + H_2) \le n$, donc:

$$\dim(H_1 \cap H_2) \ge 2(n-1) - n = n-2$$
.

Montrons alors par récurrence finie que pour tout $k \in [2, n-1]$, $\dim(H_1 \cap ... \cap H_k) \ge n-k$.

On vient de voir que cela est vrai pour k = 2. Supposons l'inégalité vraie pour $k \in [2, n-2]$ (s'il y en a, c'està-dire quand $n \ge 4$). On alors :

$$\dim(H_1 \cap ... \cap H_k \cap H_{k+1}) = \dim(H_1 \cap ... \cap H_k) + \dim(H_{k+1} - \dim((H_1 \cap ... \cap H_k) + H_{k+1}).$$

Et:

 $\dim(H_1 \cap ... \cap H_k) \ge n - k$ (par hypothèse de récurrence)

$$\dim H_{k+1} = n - 1$$

$$\dim ((H_1 \cap ... \cap H_k) + H_{k+1}) \leq n$$

Donc:

$$\dim(H_1 \cap ... \cap H_k \cap H_{k+1}) \ge n-k+n-1-n = n-(k+1)$$
.

Et ainsi, la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in [2, n-1]$ et en particulier pour k = n-1, ce qui donne :

$$\dim(H_1 \cap ... \cap H_{n-1}) \ge n - (n-1) = 1$$
.

Ainsi, $H_1 \cap ... \cap H_{n-1}$ est de dimension au moins 1, donc :

L'intersection $H_1 \cap ... \cap H_{n-1}$ n'est pas réduite à $\{0\}$.

Exercice 2

Comme f et g sont linéaires et vérifient $f^2 = g^2 = id_E$, ce sont des symétries de E. Elles sont donc bijectives entre autres (et même involutives).

Si $F = \ker(f - id_F)$ et $G = \ker(f + id_F)$, f est la symétrie par rapport à F, parallèlement à G et $E = F \oplus G$.

Soit $x \in F$. On a f(x) = x, donc g(f(x)) = g(x) et avec gf = -fg, on a f(g(x)) = -g(x), donc $g(x) \in G$.

Ainsi : $g(F) \subset G$.

On prouve de la même façon que $g(G) \subset F$ et donc $g^2(G) \subset g(F)$, soit (avec $g^2 = id_E$): $G \subset g(F)$.

Finalement:

$$g(F) = G$$
.

Or, g est bijective, donc dim $g(F) = \dim F$, ce qui nous donne :

$$\dim F = \dim G$$
.

Comme $E = F \oplus G$, on a dim $F + \dim G = n$ et en notant p la dimension commune de F et G, on obtient :

$$n = 2p$$
.

Donc:

n est pair.

Soit maintenant $(e_1, e_2, ..., e_n)$ une base de F.

Comme g(F) = G avec g bijective, $(g(e_1), g(e_2), ..., g(e_p))$ est une base de G.

Posons pour tout $k \in [1, p]$, $g(e_k) = e_{p+k}$ et $\mathcal{B} = (e_1, ..., e_p, g(e_1), ..., g(e_p)) = (e_1, ..., e_p, e_{p+1}, ..., e_{2p})$.

Comme $E = F \oplus G$, \mathcal{B} est une base de E et, pour tout $k \in [1, p]$:

- $e_k \in F$ donc $f(e_k) = e_k$ et $g(e_k) = e_{p+k}$;
- $e_{n+k} \in G \text{ donc } f(e_{n+k}) = -e_{n+k} \text{ et } g(e_{n+k}) = g^2(e_k) = e_k$.

Ainsi:

Les matrices de
$$f$$
 et g sont respectivement $\begin{pmatrix} I_p & 0_p \\ 0_p & -I_p \end{pmatrix}$ et $\begin{pmatrix} 0_p & I_p \\ I_p & 0_p \end{pmatrix}$ dans la base \mathcal{B} .

Exercice 3

1) On a:

$$(f \text{ non injective}) \Leftrightarrow (\ker f \neq \{0\})$$

Et:

$$(f = 0 \text{ ou } f \text{ est un diviseur de zéro à gauche}) \Leftrightarrow (II existe $g \in \mathcal{L}(E) \text{ tel que } g \neq 0 \text{ et } fg = 0)$
 $\Leftrightarrow (II existe $g \in \mathcal{L}(E) \text{ tel que Im } g \neq \{0\} \text{ et Im } g \subset \ker f)$$$$

Il est alors immédiat que s'il existe $g \in \mathcal{L}(E)$ tel que Im $g \neq \{0\}$ et Im $g \subset \ker f$, alors $\ker f \neq \{0\}$.

Réciproquement, si $\ker f \neq \{0\}$, alors si p est un projecteur sur $\ker f$, parallèlement à un supplémentaire quelconque de $\ker f$, on a $p \neq 0$ et fp = 0.

Ainsi, on a bien:

```
(f non injective) \Leftrightarrow (f = 0 ou f est un diviseur de zéro à gauche).
```

2) On a:

$$(f \text{ non surjective}) \Leftrightarrow (\operatorname{Im} f \neq E)$$

Et:

```
(f = 0 \text{ ou } f \text{ est un diviseur de zéro à droite}) \Leftrightarrow (Il existe g \in \mathcal{L}(E) tel que g \neq 0 et gf = 0) \Leftrightarrow (Il existe g \in \mathcal{L}(E) tel que \ker g \neq E et \operatorname{Im} f \subset \ker g)
```

Il est alors immédiat que s'il existe $g \in \mathcal{L}(E)$ tel que ker $g \neq E$ et $\operatorname{Im} f \subset \ker g$, alors $\operatorname{Im} f \neq E$.

Réciproquement, si Im $f \neq E$, alors si p est un projecteur sur un supplémentaire quelconque de Im f (qui n'est pas réduit à $\{0\}$) et parallèlement à Im f, on a $p \neq 0$ et pf = 0.

Ainsi, on a bien:

```
(f non surjective) \Leftrightarrow (f = 0 ou f est un diviseur de zéro à droite).
```

Exercice 4

1) On a $P = P_1 P_2 = P_2 P_1$, donc $P(f) = P_1(f) P_2(f) = P_2(f) P_1(f) = uv = vu$ et comme P(f) = 0, on a bien :

$$uv = vu = 0$$

Si uv = 0, alors $\text{Im } v \subset \ker u$ et en passant aux dimensions, on obtient avec le théorème du rang :

$$rg(v) \le \dim(\ker u) \iff n - \dim(\ker v) \le \dim(\ker u).$$

Soit:

$$\dim(\ker u) + \dim(\ker v) \ge n$$

2) On a admis le théorème de Bézout pour les polynômes, donc il existe $(U,V) \in \mathbb{K}[X]^2$ tel que $UP_1 + VP_2 = 1$. Ceci se traduit par :

$$U(f)P_1(f)+V(f)P_2(f)=U(f)u+V(f)v=id_E$$
.

Donc pour tout $x \in E$:

$$x = U(f)(u(x)) + V(f)(v(x)).$$

Si $x \in \ker u \cap \ker v$, on a u(x) = v(x) = 0 et donc :

$$x = U(f)(0) + V(f)(0) = 0.$$

Ainsi:

$$\ker u \cap \ker v = \{0\}$$

On a alors:

$$\ker u + \ker v = \ker u \oplus \ker v \subset E$$
.

Donc, $\dim(\ker u \oplus \ker v) = \dim(\ker u) + \dim(\ker v) \le n$. Avec $\dim(\ker u) + \dim(\ker v) \ge n$ obtain plus haut, on obtain :

$$\dim(\ker u \oplus \ker v) = \dim(\ker u) + \dim(\ker v) = n$$
.

Et donc:

$$E = \ker u \oplus \ker v$$

3) Comme $u = P_1(f)$ est un polynôme en f, u et f commutent. Alors, pour tout $x \in \ker u$, on a :

$$u(f(x)) = f(u(x)) = f(0) = 0 \implies f(x) \in \ker u$$
.

Ainsi, $f(\ker u) \subset \ker u$, donc:

 $\ker u$ est stable par f.

Notons f_u l'endomorphisme induit par f sur $\ker u$, soit f_u : $\ker u \to \ker u$; $x \mapsto f(x)$.

Pour tout $x \in \ker u$, on a $P_1(f_u)(x) = P_1(f)(x) = u(x) = 0$. Donc, $P_1(f_u) = 0$ et ainsi :

 P_1 est un polynôme annulateur de l'endomorphisme induit par f sur $\ker u$.

4) Soient $(e_1, e_2, ..., e_p)$ une base de $\ker u$ et $(e_{p+1}, e_{p+2}, ..., e_n)$ une base de $\ker v$.

Comme $E = \ker u \oplus \ker v$, la famille $\mathcal{B} = (e_1, ..., e_n, e_{n+1}, ..., e_n)$ est une base de E.

Comme $\ker u$ est stable par f, pour tout $j \in [1, p]$, $f(e_j) \in \ker u$ donc $f(e_j) = \sum_{i=1}^p a_{i,j} e_i$.

Or, u et v jouent le même rôle, donc on prouve comme plus haut que $\ker v$ est stable par f, et donc, pour tout $j \in [\![p+1,n]\!], \ f(e_j) \in \ker v \ donc \ f(e_j) = \sum_{i=n+1}^n a_{i,j} e_i$.

Posons $A = (a_{i,j})_{1 \le i,j \le p} \in \mathcal{M}_p(\mathbb{K})$ et $B = (a_{i,j})_{p+1 \le i,j \le n} \in \mathcal{M}_{n-p}(\mathbb{K})$, on a alors :

$$M_{\mathcal{B}}(f) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array}\right).$$

On a $A = M_{(e_1, e_2, \dots, e_p)}(f_u)$ et $P_1(f_u) = 0$, donc $P_1(A) = 0_p$. On prouve de même que $P_2(B) = 0_{n-p}$ et ainsi :

Il existe une base \mathcal{B} de E dans laquelle $M_{\mathcal{B}}(f) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ où A et B sont des matrices carrées telles que $P_1(A) = 0_p$ et $P_2(B) = 0_{n-p}$.

5) Comme on vient de le prouver pour r=2, tentons de généraliser par récurrence le fait que si P(f)=0 où $P=P_1P_2...P_r$ avec $r\geq 2$ et où les P_i sont des polynômes non nuls de $\mathbb{K}[X]$ deux à deux sans racine commune (réelle ou complexe), alors on peut trouver une base de E dans laquelle la matrice de f est diagonale par blocs. Supposons la propriété vraie à un rang $r\geq 2$.

Soit $f \in \mathcal{L}(E)$ tel que P(f) = 0 avec $P = P_1 P_2 ... P_r P_{r+1}$ où les P_i sont des polynômes non nuls de $\mathbb{K}[X]$ deux à deux sans racine commune (réelle ou complexe).

Posons $Q = P_1 P_2 ... P_r$. Les racines réelles ou complexes de Q sont celles des P_i pour $i \in [1, r]$, donc ne sont pas racines de P_{r+1} (qui n'a de racine commune avec aucun des autres P_i). On a de plus $P = Q P_{r+1}$.

On peut donc utiliser le résultat que l'on vient de prouver : il existe deux matrices carrées A et B, et une base $\mathcal{B} = \left(e_1,...,e_p,e_{p+1},...,e_n\right)$ de E telle que $(e_1,e_2,...,e_p)$ une base de $\ker Q(f)$ et $(e_{p+1},e_{p+2},...,e_n)$ une base de $\ker Q(f)$ et dans laquelle :

$$M_{\mathcal{B}}(f) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array}\right).$$

De plus, $Q = P_1 P_2 ... P_r$ est un polynôme annulateur de l'endomorphisme induit par f sur $\ker Q(f)$ et A est la matrice de cet endomorphisme dans la base $(e_1, e_2, ..., e_p)$ de $\ker Q(f)$.

On peut donc utiliser l'hypothèse de récurrence : il existe une base $(f_1, f_2, ..., f_p)$ de $\ker Q(f)$ dans laquelle la matrice de l'endomorphisme induit par f sur $\ker Q(f)$ est diagonale par blocs.

La matrice de f dans la base $(f_1, f_2, ..., f_p, e_{p+1}, e_{p+2}, ..., e_n)$ sera alors elle aussi diagonale par bloc, donc la propriété est vraie au rang r+1.

La propriété est donc initialisée et héréditaire donc vraie pour tout $r \ge 2$, autrement dit :

Si P(f) = 0 où $P = P_1 P_2 ... P_r$ avec $r \ge 2$ et où les P_i sont des polynômes non nuls de $\mathbb{K}[X]$ deux à deux sans racine commune (réelle ou complexe), alors on peut trouver une base de E dans laquelle la matrice de f est diagonale par blocs.

Exercice 5

Remarquons que si A est une matrice nilpotente, la somme $\sum_{k=0}^{+\infty} \frac{1}{k!} A^k$ est finie, donc $\exp(A)$ est bien définie.

1) Soient p et q les indices de nilpotence respectifs de A et B. On a donc pour tout entier $k \ge p$, $A^k = 0_n$ et pour tout entier $k \ge q$, $B^k = 0_n$. Alors, comme A et B commutent, on peut écrire :

$$(A+B)^{p+q} = \sum_{k=0}^{p+q} \binom{p+q}{k} A^k B^{p+q-k} = \sum_{k=0}^{p} \binom{p+q}{k} A^k B^{p+q-k} + \sum_{k=p+1}^{p+q} \binom{p+q}{k} A^k B^{p+q-k} .$$

Or:

- pour tout $k \in [0, p]$, on a $p+q-k \ge q$, donc $B^{p+q-k} = 0_n$;
- pour tout $k \in [p+1, p+q]$, on a $A^k = 0_n$.

Ainsi, dans la somme précédente, tous les termes sont nuls, donc $(A+B)^{p+q}=0_n$, ce qui prouve que :

$$A + B$$
 est nilpotente.

On a alors:

$$\exp(A) \times \exp(B) = \left(\sum_{i=0}^{+\infty} \frac{1}{i!} A^{i}\right) \times \left(\sum_{j=0}^{+\infty} \frac{1}{j!} B^{j}\right) = \sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} \frac{1}{i!} \frac{1}{j!} A^{i} B^{j} = \sum_{k=0}^{+\infty} \sum_{i=0}^{k} \frac{1}{i!(k-i)!} A^{i} B^{k-i}$$
$$= \sum_{k=0}^{+\infty} \frac{1}{k!} \left(\sum_{i=0}^{k} \binom{k}{i} A^{i} B^{k-i}\right) = \sum_{k=0}^{+\infty} \frac{1}{k!} (A+B)^{k} = \exp(A+B)$$

Et comme A + B = B + A, on a $\exp(B) \times \exp(A) = \exp(B + A) = \exp(A + B) = \exp(A) \times \exp(B)$ et ainsi :

$$\exp(A+B) = \exp(A) \times \exp(B) = \exp(B) \times \exp(A)$$

2) Remarquons que 0_n est nilpotente et $\exp(0_n) = \sum_{k=0}^{+\infty} \frac{1}{k!} 0_n^{\ k} = I_n + \sum_{k=1}^{+\infty} \frac{1}{k!} 0_n^{\ k} = I_n$. Alors : $\exp(A) \times \exp(-A) = \exp(-A) \times \exp(A) = \exp(A-A) = \exp(0_n) = I_n$.

Donc:

 $\exp(A)$ est inversible, d'inverse $\exp(-A)$.

Exercice 6

Commençons par traiter le cas où a = 0. La relation devient tr(M)A = B et il existe une matrice M vérifiant cela si et seulement si $B = \lambda A$. Dans ce cas, toute matrice M de trace λ convient.

On suppose maintenant que $a \neq 0$. S'il existe $M \in \mathcal{M}_n(\mathbb{K})$ telle que aM + tr(M)A = B, alors:

$$tr(aM + tr(M)A) = tr(B) \iff atr(M) + tr(M) \times tr(A) = tr(B) \iff (a + tr(A))tr(M) = tr(B)$$
.

Plusieurs cas se présentent alors.

• Si $a + tr(A) \neq 0$, alors $tr(M) = \frac{tr(B)}{a + tr(A)}$ et:

$$M = \frac{1}{a} \left(B - \frac{tr(B)}{a + tr(A)} A \right).$$

On montre facilement que cette matrice vérifie bien la relation voulue.

• Si a + tr(A) = 0 et tr(B) = 0, alors $M = \frac{1}{a}(B - \lambda A)$ convient pour tout $\lambda \in \mathbb{K}$.

En effet, avec a = -tr(A) et tr(B) = 0, on a pour tout $\lambda \in \mathbb{K}$:

$$a\left[\frac{1}{a}(B-\lambda A)\right] + tr\left[\frac{1}{a}(tr(B)-\lambda tr(A))\right]A = B - \lambda A + \frac{1}{a}(tr(B)-\lambda tr(A))A = B - \lambda A + \lambda A = B.$$

• Si a+tr(A)=0 et $tr(B)\neq 0$, il n'y a alors pas de solution.

Finalement:

Il existe $M \in \mathcal{M}_n(\mathbb{K})$ telle que aM + tr(M)A = B quand :

- a = 0 et $B = \lambda A \ (\lambda \in \mathbb{K})$;
- ou $a \neq 0$ et $a + tr(A) \neq 0$;
- ou $a \neq 0$, a + tr(A) = 0 et tr(B) = 0.

Exercice 7

Posons $f = \sum_{g \in G} g$.

Pour tout $g_0 \in G$, soit l'application $\psi : G \to G$; $g \mapsto g_0 g$. Cette application est bien à images dans G car G est sable par composition et bijective de réciproque $g \mapsto g_0^{-1} g$ car g_0 est bijective et $g_0^{-1} \in G$.

On a donc $\psi(G) = \{g_0 g, g \in G\} = G$ et:

$$g_0 f = g_0 \sum_{g \in G} g = \sum_{g \in G} g_0 g = \sum_{g \in \psi(G)} g = \sum_{g \in G} g = f \; .$$

On a donc pour tout $g \in G$, gf = f, donc:

$$\sum_{g \in G} gf = \sum_{g \in G} f \quad \Leftrightarrow \quad \left(\sum_{g \in G} g\right) f = rf \quad \Leftrightarrow \quad f^2 = rf.$$

Comme G est non vide, on a $r \neq 0$ et si on pose $p = \frac{1}{r}f$, p est linéaire et :

$$p^2 = \frac{1}{r^2} f^2 = \frac{1}{r^2} rf = \frac{1}{r} f = p$$
.

Donc, p est un projecteur de E et on a :

$$rg(p) = tr(p) = \frac{1}{r}tr(f) = \frac{1}{r}tr\left(\sum_{g \in G} g\right) = \frac{1}{r}\sum_{g \in G} tr(g).$$

1) Si $\sum_{g \in G} tr(g) = 0$, on a immédiatement rg(p) = 0, ce qui implique que p = 0 et donc que :

$$f = \sum_{g \in G} g = 0$$

2) Remarquons déjà que pour tout $x \in F$, on a g(x) = x pour tout $g \in G$, donc :

$$p(x) = \frac{1}{r}f(x) = \frac{1}{r}\sum_{g \in G}g(x) = \frac{1}{r}\sum_{g \in G}x = \frac{1}{r}rx = x.$$

Ainsi, p(x) = x, donc $x \in \text{Im } p$. Ceci prouve que :

$$F \subset \operatorname{Im} p$$
.

Soit maintenant $x \in \text{Im } p$. On a p(x) = x, soit $x = \frac{1}{r} f(x)$.

Soit $g \in G$. On a vu plus haut que gf = f, donc:

$$g(x) = \frac{1}{r}gf(x) = \frac{1}{r}f(x) = p(x) = x$$
.

Ainsi, g(x) = x pour tout $g \in G$, donc $x \in F$. Ceci prouve que :

$$\operatorname{Im} p \subset F.$$

Finalement, on a F = Im p et donc :

F est bien un sous-espace de E de dimension $rg(p) = \frac{1}{r} \sum_{g \in G} tr(g)$.

Exercice 8

1) a. Pour tout $g \in \mathcal{L}(E)$, on a ker $g \subset \ker f \circ g$ et $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Alors, pour tout $k \in \mathbb{N}$, si on prend $g = f^k$, on a ker $f^k \subset \ker f \circ f^k$ et $\operatorname{Im} f^k \circ f \subset \operatorname{Im} f^k$, soit :

$$\ker f^{^{k}} \subset \ker f^{^{k+1}} \text{ et } \operatorname{Im} f^{^{k+1}} \subset \operatorname{Im} f^{^{k}}.$$

Ainsi:

 $\left(\ker f^k\right)_{k\in\mathbb{N}}$ et $\left(\operatorname{Im} f^k\right)_{k\in\mathbb{N}}$ sont respectivement croissante et décroissante pour l'inclusion.

b. Supposons que pour $p \in \mathbb{N}$, on a Im $f^p = \text{Im } f^{p+1}$.

Montrons alors par récurrence sur k que pour tout entier $k \ge p$, Im $f^k = \text{Im } f^p$.

Pour k = p, c'est immédiat.

Supposons la propriété vraie à un rang $k \ge p$. On a alors :

$$\operatorname{Im} f^{k+1} = f^{k+1}(E) = f(f^{k}(E)) = f(\operatorname{Im} f^{k}) = f(\operatorname{Im} f^{p}) = f(f^{p}(E)) = f^{p+1}(E) = \operatorname{Im} f^{p+1} = \operatorname{Im} f^{p}.$$

Donc, la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout entier $k \ge p$, soit :

Si Im
$$f^p = \text{Im } f^{p+1}$$
, alors Im $f^k = \text{Im } f^p$ pour tout entier $k \ge p$.

c. Supposons que pour $p \in \mathbb{N}$, on a ker $f^p = \ker f^{p+1}$.

Soit un entier $k \ge p$.

On a toujours $\ker f^k \subset \ker f^{k+1}$ (car la suite $\ker f^k$)_{$k \in \mathbb{N}$} est croissante pour l'inclusion) et si $x \in \ker f^{k+1}$:

$$f^{k+1}(x) = f^{k-p+p+1}(x) = f^{p+1}(f^{k-p}(x)) = 0.$$

Donc, $f^{k-p}(x) \in \ker f^{p+1} = \ker f^p$, d'où:

$$f^{p}\left(f^{k-p}(x)\right) = f^{k}(x) = 0.$$

Donc, $x \in \ker f^k$ et ainsi, $\ker f^{k+1} \subset \ker f^k$.

Ainsi, $\ker f^{k+1} = \ker f^k$ pour tout entier $k \ge p$, donc la suite $(\ker f^k)_{k \in \mathbb{N}}$ est constante pour l'inclusion à partir du rang p, soit :

Si ker
$$f^p = \ker f^{p+1}$$
, alors ker $f^k = \ker f^p$ pour tout entier $k \ge p$.

d. On veut prouver que $f(N) \subset N$ et $f(I) \subset I$.

Soit $x \in N = \bigcup_{k \in \mathbb{N}} \ker f^k$. Il existe $a \in \mathbb{N}$ tel que $x \in \ker f^a$.

Or, $\ker f^a \subset \ker f^{a+1}$, donc $x \in \ker f^{a+1}$, soit $f^{a+1}(x) = f^a(f(x)) = 0$, donc $f(x) \in \ker f^a \subset N$.

Ainsi, pour tout $x \in N$, $f(x) \in N$, soit :

$$f(N) \subset N$$

Soit $x \in I = \bigcap_{k \in \mathbb{N}} \operatorname{Im} f^k$. On a $x \in \operatorname{Im} f^k$ pour tout $k \in \mathbb{N}$.

Alors, $f(x) \in f(\operatorname{Im} f^k) = \operatorname{Im} f^{k+1}$ pour tout $k \in \mathbb{N}$, soit $f(x) \in \operatorname{Im} f^k$ pour tout $k \in \mathbb{N}^*$. Enfin, comme $f(x) \in \operatorname{Im} f^0 = \operatorname{Im} id_E = E$, on a $f(x) \in \operatorname{Im} f^k$ pour tout $k \in \mathbb{N}$, donc $f(x) \in I$.

Ainsi, pour tout $x \in I$, $f(x) \in I$, soit :

$$f(I) \subset I$$

2) a. La suite $(\operatorname{Im} f^k)_{k \in \mathbb{N}}$ est décroissante pour l'inclusion, donc pour tout $k \in \mathbb{N}$, $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$.

Ceci implique que pour tout $k \in \mathbb{N}$, $rg(f^k) \le rg(f^{k+1})$. La suite $\left(rg(f^k)\right)_{k \in \mathbb{N}}$ est donc une suite d'entier décroissante : elle est stationnaire. Ceci veut dire qu'il existe un entier naturel p tel que $rg(f^k) = rg(f^p)$ pour tout entier $k \ge p$ et si $p \ne 0$, $rg(f^p) < rg(f^{p-1})$.

Alors, si $p \neq 0$, on a $\operatorname{Im} f^p \neq \operatorname{Im} f^{p-1}$ et, comme pour tout entier $k \geq p$, $\operatorname{Im} f^k \subset \operatorname{Im} f^p$, l'égalité des rangs implique $\operatorname{Im} f^k = \operatorname{Im} f^p$.

Ainsi:

Il existe $p \in \mathbb{N}$ tel que $\operatorname{Im} f^p \neq \operatorname{Im} f^{p-1}$ si $p \neq 0$ et $\operatorname{Im} f^k = \operatorname{Im} f^p$ pour tout entier $k \geq p$.

b. Avec la croissance de $\left(\ker f^k\right)_{k\in\mathbb{N}}$ pour l'inclusion et le théorème du rang, on a pour tout entier $k\geq p$:

$$rg(f^{k}) = rg(f^{p}) \implies n - rg(f^{k}) = n - rg(f^{p}) \implies \dim(\ker f^{k}) = \dim(\ker f^{p})$$

$$\ker f^{p} \subset \ker f^{k}$$

$$\Leftrightarrow \ker f^{k} = \ker f^{p}.$$

Et si $p \neq 0$:

$$rg\left(f^{p}\right) < rg\left(f^{p-1}\right) \quad \Rightarrow \quad \dim\left(\ker f^{p}\right) = n - rg\left(f^{p}\right) > n - rg\left(f^{p-1}\right) = \dim\left(\ker f^{p-1}\right) \quad \Rightarrow \quad \ker f^{p} \neq \ker f^{p-1}.$$

Ainsi, on a bien:

$$\ker f^p \neq \ker f^{p-1}$$
 si $p \neq 0$ et $\ker f^k = \ker f^p$ pour tout entier $k \geq p$.

c. Si p = 0, alors $p \le n$. On suppose que $p \ge 1$.

Supposons qu'il existe $k \in [0, p-1]$ tel que Im $f^{k+1} = \text{Im } f^k$.

Alors, d'après la question 1b, on a $\operatorname{Im} f^{K+1} = \operatorname{Im} f^{K} = \operatorname{Im} f^{K}$ pour tout entier $K \ge k$ et en particulier pour K = p-1, on obtient $\operatorname{Im} f^{P} = \operatorname{Im} f^{P-1}$, qui est contradictoire. Donc, pour tout $k \in [0, p-1]$, $\operatorname{Im} f^{k+1} \ne \operatorname{Im} f^{k}$.

Comme on a $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$, on en déduit que pour tout $k \in [0, p-1]$, $rg(f^{k+1}) < rg(f^k)$.

De plus, $\operatorname{Im} f^{0} = \operatorname{Im} id_{E} = E$, donc $\operatorname{rg}(f^{0}) = n$ et ainsi, on a :

$$0 \le rg(f^p) < rg(f^{p-1}) < ... < rg(f^2) < rg(f) < n$$

Alors:

$$\left\{rg\left(f\right),rg\left(f^{2}\right),\ldots,rg\left(f^{p}\right)\right\}\subset\left[\left[0,n-1\right]\right]\ \Rightarrow\ \operatorname{Card}\left(\left\{rg\left(f\right),rg\left(f^{2}\right),\ldots,rg\left(f^{p}\right)\right\}\right)\leq\operatorname{Card}\left(\left[\left[0,n-1\right]\right]\right)=n\ .$$

Enfin, comme les $rg(f^k)$ sont distincts deux à deux quand $k \in [1, n]$, on a :

Card
$$(rg(f), rg(f^2), ..., rg(f^p)) = p$$
.

Et ainsi:

$$p \le n$$

d. On a:

• $\ker f^k = \ker f^p$ et $\operatorname{Im} f^k = \operatorname{Im} f^p$ pour tout entier $k \ge p$, donc:

$$\bigcup_{k \ge p} \ker f^k = \ker f^p \text{ et } \bigcap_{k \ge p} \operatorname{Im} f^k = \operatorname{Im} f^p.$$

• $\ker f^k \subset \ker f^p$ et $\operatorname{Im} f^p \subset \operatorname{Im} f^k$ pour tout entier $k \in [0, p]$ donc :

$$\bigcup_{0 \le k \le p} \ker f^k = \ker f^p \text{ et } \bigcap_{0 \le k \le p} \operatorname{Im} f^k = \operatorname{Im} f^p.$$

Alors, on a bien:

$$N = \ker f^p$$
 et $I = \operatorname{Im} f^p$.

Soit $x \in \ker f^p \cap \operatorname{Im} f^p$. On a $f^p(x) = 0$ et il existe $z \in E$ tel que $x = f^p(z)$, alors :

$$f^p(x) = 0 \implies f^p(f^p(z)) = f^{2p}(z) = 0 \implies z \in \ker f^{2p} = \ker f^p \implies f^p(z) = 0 \implies x = 0.$$

Ainsi:

$$\ker f^{p} \cap \operatorname{Im} f^{p} = \{0\}.$$

On a donc $\ker f^p + \operatorname{Im} f^p = \ker f^p \oplus \operatorname{Im} f^p \subset E$ et d'après le théorème du rang :

$$\dim(\ker f^p \oplus \operatorname{Im} f^p) = \dim(\ker f^p) + \dim(\operatorname{Im} f^p) = n = \dim E.$$

Donc:

$$E = \ker f^p \oplus \operatorname{Im} f^p$$

e. On a vu que pour tout $k \in \mathbb{N}$, $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$. Or, $\operatorname{Im} f^{k+1} = f\left(\operatorname{Im} f^k\right)$, donc $\operatorname{Im} f^k$ est stable par f.

Appelons f_k l'endomorphisme induit par f sur $\operatorname{Im} f^k$. On a :

$$\operatorname{Im} f_k = f\left(\operatorname{Im} f^k\right) = \operatorname{Im} f^{k+1} \quad \text{et} \quad \ker f_k = \left\{x \in \operatorname{Im} f^k, f(x) = 0\right\} = \operatorname{Im} f^k \cap \ker f \ .$$

Le théorème du rang appliqué à $\,f_{\scriptscriptstyle k}\,$ donne alors :

$$\dim \left(\operatorname{Im} f_{k}\right) + \dim \left(\ker f_{k}\right) = \dim \left(\operatorname{Im} f^{k}\right) \iff rg\left(f^{k}\right) - rg\left(f^{k+1}\right) = \dim \left(\operatorname{Im} f^{k} \cap \ker f\right).$$

Or, pour tout $k \in \mathbb{N}$, $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$, donc $\operatorname{Im} f^{k+1} \cap \ker f \subset \operatorname{Im} f^k \cap \ker f$ et:

$$\dim \left(\operatorname{Im} f^{k+1} \cap \ker f\right) \leq \dim \left(\operatorname{Im} f^{k} \cap \ker f\right).$$

Ceci prouve que:

La suite
$$(rg(f^k) - rg(f^{k+1}))_{k \in \mathbb{N}}$$
 est décroissante.

Par ailleurs, on a vu que $0 \le rg(f^p) < rg(f^{p-1}) < ... < rg(f^2) < rg(f) < n$.

Ceci entraine que pour tout $k \in [0, p-1]$, $rg(f^k) - rg(f^{k+1}) > 0$, et comme $rg(f^k) - rg(f^{k+1})$ est entier, on obtient $rg(f^k) - rg(f^{k+1}) \ge 1$.

Ainsi:

La suite $\left(rg(f^k) - rg(f^{k+1})\right)_{k \in \mathbb{N}}$ est minorée par 1 jusqu'au rang p-1.

On a alors pour tout $k \in [0, p-1]$ et pour tout $i \in [0, k]$:

$$1 \le rg(f^{i}) - rg(f^{i+1}) \le rg(f^{0}) - rg(f^{1}) = rg(id_{E}) - rg(f) = n - rg(f).$$

Et en sommant de i=1 à i=k, on obtient pour tout $k \in [1, p-1]$ (quand $p \ge 2$):

$$\sum_{i=1}^{k} 1 \le \sum_{i=1}^{k} \left[rg(f^{i}) - rg(f^{i+1}) \right] \le \sum_{i=1}^{k} \left[n - rg(f) \right].$$

Soit par télescopage, pour tout $k \in [[1, p-1]]$ (quand $p \ge 2$):

$$k \le rg(f) - rg(f^{k+1}) \le k \left[n - rg(f) \right]$$

3) a. Comme α , l'indice de nilpotence de f, est le plus petit entier naturel non nul α tel que $f^{\alpha} = 0$, on a $f^{\alpha-1} \neq 0$ et $\text{Im } f^{\alpha-1} \neq \{0\} = \text{Im } f^{\alpha}$.

De plus, pour tout entier $k \ge \alpha$, $f^k = f^{k-\alpha} f^{\alpha} = 0$.

Ainsi, on a $\operatorname{Im} f^{\alpha} \neq \operatorname{Im} f^{\alpha-1}$ et pour tout entier $k \geq \alpha$, $\operatorname{Im} f^{k} = \operatorname{Im} f^{\alpha} = \{0\}$. D'après la question 2, $\alpha = p$, autrement dit :

L'indice de nilpotence de f est p.

b. On a vu que $\alpha = p \le n$. Or, pour tout entier $k \ge \alpha$, $f^k = 0$. En particulier pour k = n:

$$f^n = 0$$

c. Comme $\operatorname{Im} f^{p-1} \neq \operatorname{Im} f^p = \{0\}$, $\operatorname{Im} f^{p-1}$ contient un vecteur non nul, autrement dit :

Il existe un vecteur $x \in E$ tel que $f^{p-1}(x) \neq 0$.

Soit $(\lambda_0, \lambda_1, ..., \lambda_{p-1}) \in \mathbb{K}^p$ tel que :

$$\lambda_0 x + \lambda_1 f(x) + ... + \lambda_{p-1} f^{p-1}(x) = 0$$
 (1).

Rappelons que pour tout entier $k \ge p \ge 1$, $f^k(x) = 0$.

Supposons qu'il existe un ou plusieurs λ_i non nul(s). Notons λ_m celui de plus petit indice avec $m \in [0, p-1]$.

On a donc $\lambda_m \neq 0$ et $\lambda_k = 0$ pour tout entier $k \in [0, m-1]$ (s'il y a lieu), et (1) se récrit :

$$\lambda_m f^m(x) + \lambda_{m+1} f^{m+1}(x) + \dots + \lambda_{p-1} f^{p-1}(x) = 0.$$

En appliquant f^{p-1-m} , on obtient, avec $f^p(x) = \dots = f^{2(p-1)-m}(x) = 0$:

$$\lambda_m f^{p-1}(x) + \lambda_{m+1} f^p(x) + \dots + \lambda_{p-1} f^{2(p-1)-m}(x) = 0 \quad \Longleftrightarrow \quad \lambda_m f^{p-1}(x) = 0.$$

Or, $f^{p-1}(x) \neq 0$, donc $\lambda_m f^{p-1}(x) = 0$ implique $\lambda_m = 0$, ce qui est absurde.

Ainsi, tous les λ_i sont nuls et donc :

La famille
$$(x, f(x), f^2(x), ..., f^{p-1}(x))$$
 est libre.

d. Posons $e_k = f^{n-k}(x)$ pour tout $k \in [[1, n]]$. On a alors :

$$\mathcal{B} = (e_1, e_2, \dots, e_{n-1}, e_n) = (f^{n-1}(x), f^{n-2}(x), \dots, f(x), x).$$

D'après la question précédente, si p = n, cette famille est libre et comme elle contient n vecteurs d'un espace de dimension n, c'est une base.

Enfin, on a $f(e_1) = f(f^{n-1}(x)) = f^n(x) = 0$ et pour tout $k \in [2, n]$, $f(e_k) = f(f^{n-k}(x)) = f^{n-k+1}(x) = e_{k-1}$.

Ainsi:

La matrice de f dans la base
$$\mathcal{B}$$
 est
$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}.$$

4) Notons f_N (resp. f_I) l'endomorphisme induit par f sur N (resp. sur I).

On a vu dans la question 2.d que $N = \ker f^p$.

Alors, pour tout $x \in N = \ker f^p$, on a $f_N^p(x) = f^p(x) = 0$, donc $f_N^p = 0$ et ainsi :

$$f_N$$
 est nilpotent.

On a vu aussi dans la question 2.d que $I = \text{Im } f^p$. Alors :

$$f_I(I) = f(I) = f(\operatorname{Im} f^p) = \operatorname{Im} f^{p+1} = \operatorname{Im} f^p = I.$$

Ainsi, $f_I(I) = I$, donc l'endomorphisme f_I est surjectif et, comme on est en dimension finie, il est bijectif, soit :

$$f_I \in GL(I)$$

5) Supposons qu'il existe $A \in \mathcal{M}_3(\mathbb{K})$ telle que $A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. On a alors :

$$A^4 = (A^2)^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $A^6 = A^4 A^2 = 0_3$.

Donc, A est nilpotente. Alors, d'après la question 3.b, on a $A^3 = 0_3$.

Mais alors $A^4 = A^3 A = 0_3 A = 0_3$, ce qui est absurde, donc :

Il n'existe pas de matrice
$$A \in \mathcal{M}_3(\mathbb{K})$$
 telle que $A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 9

1) On suppose que pour tout $x \in \mathbb{K}^n$, la famille (x, f(x)) est liée, donc qu'il existe $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x x$.

Montrer que f est une homothétie revient à montrer que λ_x ne dépend pas de x.

Comme $f(0) = 0 = \lambda 0$ quel que soit $\lambda \in \mathbb{K}$, on peut prouver la propriété ci-dessus pour tout vecteur non nul.

Soient alors $x, y \in \mathbb{K}^n$ non nuls.

• Si y = kx alors:

$$f(y) = \lambda_y y = f(kx) = k f(x) = k \lambda_x x = \lambda_x kx = \lambda_y y$$
.

Donc $\lambda_v = \lambda_x$.

• Si (x, y) est libre alors :

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y = f(x) + f(y) = \lambda_x x + \lambda_y y.$$

• Donc $(\lambda_{x+y} - \lambda_x)x + (\lambda_{x+y} - \lambda_y)y = 0$, ce qui donne $\lambda_{x+y} = \lambda_x = \lambda_y$ car (x, y) est libre.

Finalement, on a $\lambda_y = \lambda_x$ dans tous les cas, et donc λ_x ne dépend pas de x, ce qui veut dire que :

f est une homothétie.

2) Si $A = \lambda I_n$, alors $Tr(A) = \lambda n$, donc on a Tr(A) = 0 seulement pour $\lambda = 0$. Ainsi :

La seule matrice scalaire de trace nulle est la matrice nulle.

3) Prouvons par récurrence sur $n \in \mathbb{N}^*$ que si Tr(A) = 0, alors A est semblable à une matrice dont tous les coefficients diagonaux sont nuls.

Initialisation:

Pour n=1, la seule matrice de trace nulle est A=(0), donc la propriété est vraie (le coefficient diagonal de A est déjà nul).

Hérédité:

On suppose la propriété vraie à un rang $n \in \mathbb{N}^*$.

Soit alors $A \in \mathcal{M}_{n+1}(\mathbb{K})$ telle que Tr(A) = 0.

Si $A = 0_{n+1}$, alors A est égale à une matrice dont tous les coefficients diagonaux sont nuls.

Si $A \neq 0_{n+1}$, notons f l'endomorphisme de \mathbb{K}^{n+1} canoniquement associé à A.

D'après la question précédente, A n'est pas scalaire, donc f n'est pas une homothétie, et, d'après la question 1 (la contraposée), il existe $x \in \mathbb{K}^n$ tel que la famille (x, f(x)) est libre. On peut alors compléter cette famille en une base $\mathcal{B} = (e_1, e_2, \dots, e_n)$ de \mathbb{K}^n où $e_1 = x$ et $e_2 = f(x)$.

On a alors $f(e_1) = e_2$ et donc :

$$A' = M_{\mathcal{B}}(f) = \begin{pmatrix} 0 \times \cdots \times \\ 1 & \\ 0 & \\ \vdots & B \\ 0 \end{pmatrix} = P^{-1}AP$$

avec $B \in \mathcal{M}_n(\mathbb{K})$ et $P = P_{\mathcal{B}_c}^{\mathcal{B}}$ est la matrice de passage de \mathcal{B}_c , la base canonique de \mathbb{K}^n , à \mathcal{B} .

On a:

$$Tr(A') = Tr(B) = Tr(P^{-1}AP) = Tr(A) = 0$$
.

Donc, $B \in \mathcal{M}_n(\mathbb{K})$ est de trace nulle et on peut lui appliquer l'hypothèse de récurrence : il existe $Q \in GL_n(\mathbb{K})$ et $C \in \mathcal{M}_n(\mathbb{K})$ dont tous les coefficients diagonaux sont nuls telles que $C = Q^{-1}BQ$.

En posant
$$P' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & Q & \\ 0 & & & \end{pmatrix}$$
, on a $P' \in GL_{n+1}(\mathbb{K})$ avec $P'^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & Q^{-1} & \\ 0 & & & \end{pmatrix}$ (en multipliant P' par

cette matrice, on obtient I_{n+1}).

Avec des produits par blocs, on a :

$$P'^{-1}A'P' = \begin{pmatrix} 0 \times \cdots \times \\ \times \\ \vdots & Q^{-1}BQ \end{pmatrix} = \begin{pmatrix} 0 \times \cdots \times \\ \times \\ \vdots & C \end{pmatrix} = B'.$$

Et tous les coefficients diagonaux de B' sont nuls (car ceux de C le sont).

Enfin, on a $B' = P'^{-1}A'P' = P'^{-1}(P^{-1}AP)P' = (PP')^{-1}A(PP')$ avec $PP' \in GL_{n+1}(\mathbb{K})$, donc A est semblable à B', matrice dont tous les coefficients diagonaux sont nuls et la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}^*$.

Ceci prouve le sens direct de la propriété.

Réciproquement, si A est semblable à une matrice B dont tous les coefficients diagonaux sont nuls, alors on a :

$$Tr(A) = Tr(B) = 0 + ... + 0 = 0$$
.

Ainsi:

La matrice A est de trace nulle si et seulement si elle est semblable à une matrice dont tous les coefficients diagonaux sont nuls.

Exercice 10

1) Comme $f = f_1 + f_2 + ... + f_p$, on a pour tout $x \in E$:

$$f(x) = f_1(x) + f_2(x) + ... + f_p(x) \in \text{Im } f_1 + \text{Im } f_2 + ... + \text{Im } f_p$$
.

Donc:

$$\underline{\operatorname{Im} f \subset \operatorname{Im} f_1 + \operatorname{Im} f_2 + ... + \operatorname{Im} f_p} \quad \mathbf{(1)}$$

De plus, toujours avec $f = f_1 + f_2 + ... + f_p$, on a :

$$Tr(f) = Tr(f_1) + Tr(f_2) + ... + Tr(f_n)$$
.

Or, f_1, f_2, \dots, f_p et ici f sont des projecteurs, donc leur rang est égal à leur trace. Ainsi :

$$rg(f) = rg(f_1) + rg(f_2) + ... + rg(f_p)$$
 (2)

Or on a toujours $\dim \left(\operatorname{Im} f_1 + \operatorname{Im} f_2 + ... + \operatorname{Im} f_p\right) \leq \sum_{i=1}^p \dim \left(\operatorname{Im} f_i\right)$, donc avec (1) et (2), on obtient :

$$rg(f) = \dim \left(\operatorname{Im} f\right) \leq \dim \left(\operatorname{Im} f_1 + \operatorname{Im} f_2 + \ldots + \operatorname{Im} f_p\right) \leq \sum_{i=1}^p \dim \left(\operatorname{Im} f_i\right) = \sum_{i=1}^p rg(f_i) = rg(f).$$

Donc, $\dim(\operatorname{Im} f) = \dim(\operatorname{Im} f_1 + \operatorname{Im} f_2 + ... + \operatorname{Im} f_p) = \sum_{i=1}^{p} \dim(\operatorname{Im} f_i)$, ce qui prouve (avec (1)), que :

$$\operatorname{Im} f = \operatorname{Im} f_1 \oplus \operatorname{Im} f_2 \oplus ... \oplus \operatorname{Im} f_p$$

2) On veut:

$$(f \text{ est un projecteur de } E) \iff (\forall (i, j) \in [[1, p]]^2, i \neq j, f_i \circ f_j = 0_{\mathcal{L}(E)})$$

 $(\Rightarrow) \quad \text{On suppose que } f \text{ est un projecteur de } E. \text{ Alors, d'après la question 1, } \operatorname{Im} f = \operatorname{Im} f_1 \oplus \operatorname{Im} f_2 \oplus \ldots \oplus \operatorname{Im} f_p,$ $\operatorname{donc pour tout } j \in \llbracket 1, p \rrbracket, \operatorname{Im} f_j \subset \operatorname{Im} f \text{ et, pour tout } x \in E \text{ , } f_j(x) \in \operatorname{Im} f_j, \operatorname{donc } f_j(x) \in \operatorname{Im} f \text{ , soit : }$

$$f(f_j(x)) = f_j(x)$$
.

Mais alors:

$$f(f_j(x)) - f_j(x) = \sum_{i=1}^p f_i f_j(x) - f_j(x) = f_j^2(x) + \sum_{i=1, i \neq j}^p f_i f_j(x) - f_j(x) = \sum_{i=1, i \neq j}^p f_i f_j(x) = 0.$$

Toujours, d'après la question 1, on a $\operatorname{Im} f_1 + \operatorname{Im} f_2 + ... + \operatorname{Im} f_p = \operatorname{Im} f_1 \oplus \operatorname{Im} f_2 \oplus ... \oplus \operatorname{Im} f_p$, donc la seule décomposition de 0 dans cette somme directe est 0 + 0 + ... + 0 et :

$$\sum_{i=1,\,i\neq j}^p f_i f_j(x) = \sum_{i=1,\,i\neq j}^p f_i\left(f_j(x)\right) = 0 \quad \Rightarrow \quad \forall \, i \in \llbracket 1,\, p \rrbracket, \,\, i \neq j, \,\, f_i\left(f_j(x)\right) = f_i f_j(x) = 0 \,\,.$$

Ceci est vrai pour tout $x \in E$, donc:

$$\forall (i, j) \in [[1, p]]^2, i \neq j, f_i \circ f_j = 0_{\mathcal{L}(E)}.$$

 (\Leftarrow) On suppose ici que pour tout $(i, j) \in [1, p]^2$ tel que $i \neq j$, on a $f_i f_j = 0_{\mathcal{L}(E)}$.

On a $f = f_1 + f_2 + ... + f_p \in \mathcal{L}(E)$ et:

$$f^2 = \left(\sum_{i=1}^p f_i\right)^2 = \left(\sum_{i=1}^p f_i\right) \left(\sum_{j=1}^p f_j\right) = \sum_{i=1}^p \sum_{j=1}^p f_i f_j = \sum_{i=1}^p f_i^2 + \sum_{i=1}^p \sum_{j=1,\,j\neq i}^p f_i f_j = \sum_{i=1}^p f_i + \sum_{i=1}^p \sum_{j=1,\,j\neq i}^p 0_{\mathcal{L}(E)} = f.$$

Ainsi, $f \in \mathcal{L}(E)$ et $f^2 = f$, donc:

f est un projecteur de E .

Finalement:

$$(f \text{ est un projecteur de } E) \iff (\forall (i, j) \in [[1, p]]^2, i \neq j, f_i \circ f_j = 0_{\mathcal{L}(E)})$$