PSI*

Résumé du chapitre 1 : Séries numériques

Dans tout ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . On considère $n_0 \in \mathbb{N}$ et $(u_n)_{n \geq n_0}$ une suite de \mathbb{K} .

Définitions fondamentales

- La <u>série</u> de <u>terme général</u> u_n est la suite $(S_n)_{n \ge n_0}$ avec $S_n = \sum_{k=n_0}^n u_k$, appelé <u>somme partielle</u> de la série. On note souvent la série $\sum u_n$.
- La série <u>converge</u> si et seulement si la suite $(S_n)_{n \ge n_0}$ converge.
- Une série qui ne converge pas est dite divergente.
- En cas de convergence, on appelle <u>somme de la série</u> la limite de la suite $(S_n)_{n \ge n_0}$, notée indifféremment $\sum_{n=n_0}^{+\infty} u_n$ ou $\sum_{n \ge n_0} u_n$.
- Si $\sum u_n$ converge et a pour somme S, le <u>reste d'ordre n</u> est $R_n = S S_n = \sum_{k > n+1} u_k$.

Remarque: La suite $(u_n)_{n\geq n_0}$ converge si et seulement si la série de terme général $u_{n+1}-u_n$ converge avec $u_n=u_{n_0}+\sum_{k=n_0}^{n-1}(u_{k+1}-u_k)$ pour tout $n>n_0$ (c'est le télescopage).

Propriétés générales

- Condition nécessaire de convergence : Si $\sum u_n$ converge alors la suite $(u_n)_{n\geq n_0}$ tend vers 0.
- Si $(u_n)_{n\geq n_0}$ ne converge pas vers 0, on dit que la série <u>diverge grossièrement</u>.
- Toute combinaison linéaire de séries convergentes est convergente.

Attention : la réciproque est fausse.

En particulier, ce n'est pas parce que $\sum (u_n + v_n)$ converge que $\sum u_n$ et $\sum v_n$ convergent.

• Une série de nombres complexes converge si et seulement si les séries des parties réelles et imaginaires convergent.

Absolue convergence

- On dit que la série $\sum u_n$ est <u>absolument convergente</u> si la série $\sum |u_n|$ converge.
 - **Attention** : |. | désigne la valeur absolue pour une suite réelle et le module pour une suite complexe).
- La série $\sum u_n$ est <u>semi-convergente</u> si elle est convergente, mais pas absolument convergente.
- Théorème fondamental:

Si
$$\sum u_n$$
 est absolument convergente alors $\sum u_n$ est convergente et $\left|\sum_{n=n_o}^{+\infty} u_n\right| \le \sum_{n=n_o}^{+\infty} |u_n|$.

La réciproque est fausse!

PSI* 2

Séries à termes positifs

On suppose ici que pour tout $n \ge n_0$, $u_n \ge 0$ (la série est donc réelle).

• Pour que la série $\sum u_n$ à termes positifs converge, il faut et il suffit que la suite de ses sommes partielles soit majorée (et alors $\sum_{n \ge n_-} u_n = \sup_{n \ge n_0} S_n$).

• Si $\sum u_n$ et $\sum v_n$ sont des séries à termes positifs telles que $\sum v_n$ converge, alors :

$$u_n = O(v_n)$$
 ou $u_n = o(v_n)$ ou $u_n \sim v_n \implies \sum u_n$ converge.

Remarque : Ces propriétés se généralisent au cas des séries à termes de signe constant.

Règle de d'Alembert

On suppose que $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell$. Alors:

$$\begin{cases} \ell < 1 \implies \sum u_n \text{ converge} \\ \ell > 1 \implies \sum u_n \text{ diverge} \end{cases}$$

Si $\ell = 1$, on ne peut pas conclure.

Séries alternées (réelles)

- La série réelle $\sum u_n$ est <u>alternée</u> si pour tout $n \ge n_0$, $u_{n+1}u_n \le 0$ (u_n et u_{n+1} sont de signes contraires et on a alors $u_n = (-1)^n |u_n|$ ou $u_n = (-1)^{n+1} |u_n|$).
- Critère spéciale de convergence des séries alternées :

Si $\sum u_n$ est alternée et $(|u_n|)_{n\geq n_0}$ décroit vers 0, alors :

- $\circ \sum u_n$ converge;
- o pour tout $n \ge n_0$, $|R_n| \le |u_{n+1}|$ et R_n et $(-1)^{n+1}u_{n+1}$ sont de même signe.

Comparaison avec une intégrale : Attention, méthode à connaitre

Si $u_n = f(n)$, avec f à valeurs réelles, continue par morceaux et décroissante sur $[n_0; +\infty[$ alors :

$$\forall n \ge p \ge n_0, \ \int_{p+1}^{n+1} f(t) dt \le \sum_{k=p+1}^n u_k \le \int_p^n f(t) dt.$$

La série $\sum u_n$ converge si et seulement si la suite $(I_n)_{n\in\mathbb{N}}$ converge, avec $I_n = \int_0^n f(t) dt$.

- En cas de convergence, on a pour tout $n \in \mathbb{N}$, $0 \le (I I_n) R_n \le u_n$ avec $I = \lim I_n$.
- En cas de divergence, on a $S_n \sim I_n$.

Formule de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

PSI*

Séries de référence

• <u>Séries géométriques</u>: Pour tout $z \in \mathbb{C}$, $\sum z^n$ converge vers $\frac{1}{1-z}$ si et seulement si |z| < 1.

• <u>Séries de Riemann</u>: $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

En cas de convergence : $S_n \sim \frac{1}{(1-\alpha)n^{\alpha-1}}$; en cas de divergence : $R_n \sim \frac{1}{\alpha-1} \frac{1}{n^{\alpha-1}}$.

• Série exponentielle: Pour tout $z \in \mathbb{C}$, $\sum \frac{z^n}{n!}$ converge vers e^z .

Produit de Cauchy

- Si $\sum u_n$ et $\sum v_n$ sont deux séries, leur <u>produit de Cauchy</u> est la suite de terme général w_n défini par $w_n = \sum_{p+q=n} u_p v_q$.
- Si les séries $\sum u_n$ et $\sum v_n$ sont absolument convergentes, alors la série $\sum w_n$ l'est aussi et sa somme est le produit des sommes de $\sum u_n$ et de $\sum v_n$.