Résumé du chapitre 12 : Espaces probabilisés

I - Ensembles dénombrables et familles sommables

I-1. Ensembles dénombrables

Définition:

Un ensemble est dit <u>dénombrable</u> s'il peut être mis en bijection avec $\mathbb N$.

Un ensemble est dit <u>au plus dénombrable</u> s'il peut être mis en bijection avec \mathbb{N} ou une partie de \mathbb{N} (éventuellement finie).

Propriété :

Un ensemble dénombrable peut être décrit en extension sous la forme $\{x_n, n \in \mathbb{N}\}$ où les x_n sont deux à deux distincts.

Propriétés:

- Toute partie d'un ensemble dénombrable est finie ou dénombrable.
- Si un ensemble peut être mis en bijection avec un ensemble dénombrable, alors il est dénombrable.
- La réunion d'un « nombre » au plus dénombrable d'ensembles dénombrables est dénombrable.
- Le produit cartésien d'un nombre fini d'ensembles dénombrables est dénombrable.

I-2. Compléments sur les séries absolument convergentes

Propriétés :

Soit $\sum a_n$ une série réelle ou complexe.

• Pour toute permutation σ de \mathbb{N} , la série $\sum a_{\sigma(n)}$ est absolument convergente si et seulement si $\sum a_n$ l'est, et en cas de convergence absolue, on a $\sum_{n=0}^{+\infty} a_{\sigma(n)} = \sum_{n=0}^{+\infty} a_n$.

Autrement dit, on peut changer l'ordre des termes d'une série sans changer sa nature absolument convergente et sa somme en cas de convergence.

• Si φ est une application strictement croissante de $\mathbb N$ dans $\mathbb N$ telle que $\varphi(0)=0$, et si on pose $b_n=\sum_{k=\varphi(n)}^{\varphi(n+1)-1}a_k$ pour tout $n\in\mathbb N$, alors si $\sum a_n$ est absolument convergente la série $\sum b_n$ l'est aussi, et

dans ce cas, on a
$$\sum_{n=0}^{+\infty} b_n = \sum_{n=0}^{+\infty} \left(\sum_{k=\phi(n)}^{\phi(n+1)-1} a_k \right) = \sum_{n=0}^{+\infty} a_n$$
.

Autrement dit, on peut regrouper les termes d'une série absolument convergente sans changer sa somme.

I-3. Familles sommables

Définitions:

Soit une famille $(x_i)_{i \in I}$ dénombrable de réels positifs.

La somme de la famille, notée $\sum_{i \in I} x_i$, est donnée par $\sum_{i \in I} x_i = \sum_{n=0}^{+\infty} x_{i_n}$ avec $I = \{i_0, \dots, i_n, \dots\}$.

On dit qu'une famille $(x_i)_{i \in I}$ au plus dénombrable de réels positifs est <u>sommable</u> si sa somme est finie.

On dit qu'une famille $(x_i)_{i \in I}$ au plus dénombrable de nombres complexes est <u>sommable</u> si la famille $(|x_i|)_{i \in I}$ l'est.

Propriétés:

Soit $(x_i)_{i \in I}$ et $(y_i)_{i \in I}$ deux familles complexes au plus dénombrables.

- Si $(y_i)_{i \in I}$ est une famille sommable de réels positifs et pour tout $i \in I$, $|x_i| \le y_i$, alors $(x_i)_{i \in I}$ est sommable.
- Si $(x_i)_{i \in I}$ et $(y_i)_{i \in I}$ sont sommables, alors pour tous scalaires λ et μ , $(\lambda x_i + \mu y_i)_{i \in I}$ est sommable et la somme est linéaire : $\sum_{i \in I} (\lambda x_i + \mu y_i) = \lambda \sum_{i \in I} x_i + \mu \sum_{i \in I} y_i$.
- Si $(x_i)_{i \in I}$ est sommable et $(I_n)_{n \in \mathbb{N}}$ vérifie $\bigcup_{n \in \mathbb{N}} I_n = I$ et $I_n \cap I_m = \emptyset$ pour tous $n, m \in \mathbb{N}$ tels que $n \neq m$, alors:

$$\sum_{n=0}^{+\infty} \left(\sum_{i \in I_n} x_i \right) = \sum_{i \in I} x_i .$$

- Théorème de Fubini : Si $(x_{i,j})_{(i,j)\in\mathbb{N}^2}$ est une famille sommable, alors $\sum_{i=0}^{+\infty} \left(\sum_{j=0}^{+\infty} x_{i,j}\right) = \sum_{j=0}^{+\infty} \left(\sum_{i=0}^{+\infty} x_{i,j}\right)$.
- *Produit*: Si $(x_i)_{i \in I}$ et $(y_j)_{j \in J}$ sont deux familles complexes au plus dénombrables et sommables, alors la famille $(x_i y_j)_{(i,j) \in I \times J}$ est sommable avec :

$$\sum_{(i,j)\in I\times J} x_i y_j = \left(\sum_{i\in I} x_i\right) \left(\sum_{j\in J} y_j\right).$$

II - Espace probabilisé

II-1. Tribu et univers

Définitions :

Soit Ω un ensemble.

On appelle <u>tribu sur Ω </u> une partie \mathcal{A} de l'ensemble $\mathscr{S}(\Omega)$ des parties de Ω telle que :

- i. $\Omega \in \mathcal{A}$;
- ii. pour tout $A \in \mathcal{A}$, $\overline{A} = \Omega \setminus A \in \mathcal{A}$;
- iii. pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} , la réunion $\bigcup_{n\in\mathbb{N}} A_n$ appartient à \mathcal{A} .

L'ensemble Ω est appelé <u>univers</u>.

On appelle <u>espace probabilisable</u> un couple (Ω, \mathcal{A}) où \mathcal{A} est une tribu sur Ω .

Les éléments de \mathcal{A} sont appelés <u>événements</u>.

Un <u>système complet (au plus dénombrable) d'évènements</u> est une famille (au plus dénombrable) $(A_i)_{i\in I}$ d'évènements, incompatibles deux à deux et telle que $\bigcup_{i\in I}A_i=\Omega$.

Dans la suite, Ω est un ensemble et A est une tribu sur Ω .

Propriétés:

Soit $(A_i)_{i \in I}$ une famille d'évènements avec I fini ou dénombrable. On a :

$$\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A}_i \quad \text{et} \quad \overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A}_i.$$

Propriétés:

Soit \mathcal{A} une tribu sur un ensemble Ω .

- $\emptyset \in \mathcal{A}$.
- Toute réunion ou intersection finie d'éléments de ${\mathcal A}$ appartient à ${\mathcal A}$.
- Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} , $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}$, autrement dit, toute intersection dénombrable d'éléments de \mathcal{A} appartient à \mathcal{A} .

Parallèle entre le vocabulaire probabiliste et le vocabulaire ensembliste :

Langage probabiliste	langage ensembliste
univers	ensemble
tribu	ensemble de parties (vérifiant certaines propriétés)
issue	élément
évènement	élément de la tribu
évènement élémentaire	singleton
évènement impossible	Ø
évènement certain	ensemble entier
évènement contraire	complémentaire
évènements incompatibles	parties disjointes
A et B	$A \cap B$
A ou B	$A \cup B$
système complet d'événements non vides	partition

II-2. Loi de probabilité

Définitions:

Si Ω est un ensemble et \mathcal{A} une tribu sur Ω , on appelle <u>loi de probabilité</u> ou <u>probabilité</u> sur (Ω, \mathcal{A}) , une application $P: \mathcal{A} \to [0;1]$ telle que :

- i. $P(\Omega) = 1$.
- ii. Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'événements incompatibles deux à deux, $P(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}P(A_n)$ $(\sigma\text{-additivit}\hat{e}).$

On appelle <u>espace probabilisé</u> un triplet (Ω, \mathcal{A}, P) où \mathcal{A} est une tribu et P une probabilité sur (Ω, \mathcal{A}) .

Un évènement <u>quasi-certain</u> ou <u>presque sûr</u> est un évènement de probabilité 1.

Un évènement quasi-impossible ou négligeable est un évènement de probabilité 0.

Un système quasi-complet ou exhaustif (au plus dénombrable) d'évènements est une famille (au plus dénombrable) $(A_i)_{i \in I}$ d'évènements, incompatibles deux à deux et telle que $\bigcup_{i \in I} A_i$ est quasi-certain.

Propriété:

Si P est une probabilité sur (Ω, \mathcal{A}) , alors $P(\emptyset) = 0$.

Dans toute la suite, on se place dans un espace probabilisé (Ω, \mathcal{A}, P) .

Propriétés:

Soit A et B deux événements de Ω . On a :

- Si A et B sont incompatibles $(A \cap B = \emptyset)$, alors $P(A \cup B) = P(A) + P(B)$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

- $P(B) = P(A \cap B) + P(B \setminus A)$. $P(\overline{A}) = 1 P(A)$ $A \subset B \implies P(A) \le P(B)$. L'application P est croissante.

Propriétés:

Soit $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements de Ω .

• Continuité croissante : Si pour tout $n \in \mathbb{N}$, on a $A_n \subset A_{n+1}$, alors :

$$\lim_{n \to +\infty} P(A_n) = P\left(\bigcup_{n \in \mathbb{N}} A_n\right).$$

Continuité décroissante : Si pour tout $n \in \mathbb{N}$, on a $A_{n+1} \subset A_n$, alors :

$$\lim_{n \to +\infty} P(A_n) = P\left(\bigcap_{n \in \mathbb{N}} A_n\right).$$

Corollaires:

Soit $(A_n)_{n\in\mathbb{N}}$ une suite quelconque d'événements de Ω . On a :

$$\lim_{n \to +\infty} P \Big(\bigcup\nolimits_{k \in [\![0,n]\!]} A_k \Big) = P \Big(\bigcup\nolimits_{n \in \mathbb{N}} A_n \Big)$$

$$\lim_{n \to +\infty} P\left(\bigcap_{k \in [0,n]} A_k\right) = P\left(\bigcap_{n \in \mathbb{N}} A_n\right)$$

Propriété: Sous-additivité

Soit $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements de Ω telle que $\sum P(A_n)$ converge. On a :

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n=0}^{+\infty}P(A_n).$$

III - Conditionnement et indépendance

III-1. Probabilité conditionnelle

a. Définition:

Définition:

Si A et B sont deux événements tels que P(B) > 0, on appelle <u>probabilité conditionnelle de A sachant B le réel :</u>

$$P_B(A) = \frac{P(A \cap B)}{P(B)}.$$

Notation: $P_B(A) = P(A \mid B)$.

Propriété et définition :

L'application P_B est une probabilité sur (Ω, \mathcal{A}) appelée <u>probabilité conditionnée à B</u>.

Propriété: Formule des probabilités composées

Soit $(A_1, A_2, ..., A_m)$ une famille d'évènements. On a :

$$P(A_1 \cap A_2 \cap ... \cap A_m) = P(A_1)P_{A_1}(A_2)...P_{A_1 \cap A_2 \cap ... \cap A_{m-2}}(A_{m-1})P_{A_1 \cap A_2 \cap ... \cap A_{m-1}}(A_m).$$

b. Formule des probabilités totales :

Propriété : Formule des probabilités totales

Soit $(A_n)_{n\in\mathbb{N}}$ un système quasi-complet d'événements et B un évènement.

La série $\sum P(A_n \cap B)$ converge et :

$$P(B) = \sum_{n=0}^{+\infty} P(A_n \cap B) = \sum_{n=0}^{+\infty} P(A_n) P_{A_n}(B).$$

Corollaires: Formules de Bayes

• Si A et B sont deux événements tels que P(A) > 0 et P(B) > 0, alors :

$$P_B(A) = \frac{P(A)P_A(B)}{P(B)}.$$

• Si $(A_n)_{n\in\mathbb{N}}$ est un système complet d'événements et si B est un événement tel que P(B)>0, alors pour tout $N\in\mathbb{N}$:

$$P_{B}(A_{N}) = \frac{P(A_{N})P_{A_{N}}(B)}{\sum_{n=0}^{+\infty} P(A_{n})P_{A_{n}}(B)}.$$

III-2. <u>Indépendance</u>

a. Couple d'événements indépendants :

Définition:

Deux évènements A et B sont <u>indépendants</u> si $P(A \cap B) = P(A) \times P(B)$.

Propriété:

Si P(B) > 0, l'indépendance de A et B équivaut à $P_B(A) = P(A)$.

Propriété:

Deux évènements A et B sont indépendants si et seulement si A et \overline{B} le sont.

b. Famille finie d'événements mutuellement indépendants :

Définitions :

Soit $(A_i)_{1 \le i \le n}$ une famille d'évènements. On dit que $A_1, ..., A_n$ sont <u>mutuellement indépendants</u> si pour tout $p \in [\![2,n]\!]$ et tout $(i_1,i_2,...,i_p) \in [\![1,n]\!]^p$ tel que $i_1 < i_2 < ... < i_p$:

$$P(A_{i_1} \cap ... \cap A_{i_n}) = P(A_{i_1}) \times ... \times P(A_{i_n}).$$

Soit $(A_i)_{i \in I}$ une famille d'évènements. On dit que les A_i sont <u>mutuellement indépendants</u> si les éléments de toute sous-famille finie de $(A_i)_{i \in I}$ sont mutuellement indépendants.