Résumé du chapitre 13 : Variables aléatoires discrètes

Dans tout le chapitre, Ω est un ensemble muni d'une tribu $\mathcal A$.

I - Variables aléatoires discrètes

I-1. Généralités

Définition:

Une <u>variable aléatoire discrète</u> X sur (Ω, \mathcal{A}) est une application définie sur Ω , dont l'image $X(\Omega)$ est au plus dénombrable et telle que l'image réciproque de tout singleton $\{x\} \subset X(\Omega)$ par X appartient à \mathcal{A} . Lorsque $X(\Omega) \subset \mathbb{R}$, on parle de variable aléatoire réelle (var).

<u>Propriété</u> :

Soit X une variable aléatoire discrète sur (Ω, \mathcal{A}) .

Pour tout $U \subset X(\Omega)$, $X^{-1}(U)$ est un événement, c'est-à-dire $X^{-1}(U) \in \mathcal{A}$.

Notations:

- L'évènement $X^{-1}(U)$ est noté $(X \in U)$ ou $\{X \in U\}$.
- Lorsque $X(\Omega) \subset \mathbb{R}$, pour un réel x quelconque, on peut noter $(X \ge x)$ (et analogues avec \le , <, >), pour désigner l'évènement $X^{-1}(\{z \in \Omega, z \ge x\}) = X^{-1}([x, +\infty[)$ (et analogues).

Corollaire:

Soit X une variable aléatoire discrète sur (Ω, \mathcal{A}) . Si f est une fonction définie sur $X(\Omega)$, alors $f(X) = f \circ X$ est une variable aléatoire discrète sur (Ω, \mathcal{A}) .

I-2. Loi d'une variable aléatoire discrète

Dans toute la suite, on se place dans un espace probabilisé (Ω, \mathcal{A}, P) et X est une variable aléatoire discrète.

Propriété et définition :

L'application $P_X: \mathscr{T}(X(\Omega)) \to [0;1]; A \mapsto P(X \in A)$ est une loi de probabilité sur $(X(\Omega), \mathscr{T}(X(\Omega)))$, appelée <u>loi de la variable aléatoire</u> X.

Propriété :

La probabilité P_X est parfaitement déterminée par la donnée des P(X=x) quand x décrit $X(\Omega)$.

Propriété :

Soient X et Y deux variables aléatoires définies sur Ω telles que $X \sim Y$.

Pour toute fonction f définie sur $X(\Omega) = Y(\Omega)$, on a $f(X) \sim f(Y)$.

II - Couple de variables aléatoires discrètes

Dans cette partie, X et Y sont deux variables aléatoires discrètes.

Le couple (X,Y) est une variable aléatoire sur Ω et on note :

• pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$:

$$P(X = x, Y = y) = P((X = x) \cap (Y = y)).$$

• pour tout $(A,B) \in \mathscr{F}(X(\Omega)) \times \mathscr{F}(Y(\Omega))$:

$$P(X \in A, Y \in B) = P((X \in A) \cap (Y \in B)).$$

II-1. Loi conjointe et lois marginales

Définitions:

L'application de $X(\Omega) \times Y(\Omega)$ dans [0;1], qui, à tout (x, y) de $X(\Omega) \times Y(\Omega)$, associe P(X = x, Y = y) est appelée <u>loi conjointe</u> du couple (X, Y).

Les <u>lois marginales</u> de (X,Y) sont les lois de X et de Y.

Propriété:

Pour tout $(A, B) \in \mathcal{F}(X(\Omega)) \times \mathcal{F}(Y(\Omega))$, on a:

$$P(X \in A, Y \in B) = \sum_{(a,b) \in A \times B} P(X = a, Y = b).$$

Corollaire:

Soient A et A' sont deux parties disjointes de $X(\Omega)$ et $B \subset Y(\Omega)$. On a :

$$P(X \in A \cup A', Y \in B) = P(X \in A, Y \in B) + P(X \in A', Y \in B).$$

II-2. Indépendance

a. Loi conditionnelle:

Définition :

Soit $y \in Y(\Omega)$ tel que $P(Y = y) \neq 0$. L'application :

$$P_{(Y=y)}: X(\Omega) \rightarrow [0;1] ; x \mapsto P_{(Y=y)}(X=x)$$

est appelée loi conditionnelle de X sachant (Y = y).

b. Indépendance d'un couple de variables aléatoires :

Définition:

Les variables aléatoires X et Y sont dites <u>indépendantes</u> si, pour toutes parties $A \subset X(\Omega)$ et $B \subset Y(\Omega)$, on a :

$$P(X \in A, Y \in B) = P(X \in A) \times P(Y \in B)$$
.

Autrement dit, les évènements $(X \in A)$ et $(Y \in B)$ sont indépendants.

On note $X \perp \!\!\! \perp Y$.

Propriété:

Deux variables aléatoires X et Y sont indépendantes si et seulement si, pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$:

$$P(X = x, Y = y) = P(X = x) \times P(Y = y)$$
.

Propriété:

Si X et Y sont indépendantes, alors pour toutes fonctions f et g, définies respectivement sur $X(\Omega)$ et $Y(\Omega)$, f(X) et g(Y) sont des variables aléatoires indépendantes.

c. Mutuelle indépendance :

Définitions :

Soit X_1, \ldots, X_n des variables aléatoires sur Ω . On dit que X_1, \ldots, X_n sont <u>indépendantes</u> ou <u>mutuellement indépendantes</u> si pour tout $(x_1, \ldots, x_n) \in X_1(\Omega) \times \ldots \times X_n(\Omega)$, les évènements $(X_1 = x_1), \ldots, (X_n = x_n)$ sont mutuellement indépendants.

Si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires sur Ω , les variables aléatoires X_n sont <u>mutuellement</u> indépendantes si pour toute partie finie $A \subset \mathbb{N}$, la famille finie $(X_n)_{n\in A}$ est une famille de variables aléatoires mutuellement indépendantes.

Des <u>variables aléatoires indépendantes et identiquement distribuées (i.i.d.)</u> sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes.

Propriété :

Si $X_1,...,X_n$ sont des variables aléatoires mutuellement indépendantes, alors, quel que soit $(A_1,...,A_n) \in \mathscr{F}\big(X_1(\Omega)\big) \times ... \times \mathscr{F}\big(X_n(\Omega)\big)$, les événements $(X_i \in A_i)$ sont mutuellement indépendants.

d. Lemme des coalitions:

Propriété: Lemme des coalitions

Si $X_1,...,X_n$ sont des variables aléatoires mutuellement indépendantes et f et g sont des applications définies respectivement sur $X_1(\Omega)\times...\times X_m(\Omega)$ et $X_{m+1}(\Omega)\times...\times X_n(\Omega)$, alors les variables aléatoires $f(X_1,...,X_m)$ et $g(X_{m+1},...,X_n)$ sont indépendantes.

III - Lois usuelles

III-1. Lois usuelles avec $X(\Omega)$ fini

a. Loi uniforme:

Si X est une variable aléatoire sur Ω , la loi P_X peut être uniforme quand $X(\Omega)$ est fini : toutes les valeurs de $X(\Omega)$ ont la même probabilité, égale à $\frac{1}{n}$ avec $p = \operatorname{Card}(X(\Omega))$.

b. Loi de Bernoulli:

Définitions:

Une <u>épreuve de Bernoulli</u> est une expérience aléatoire n'ayant que deux issues possibles (notées en général succès et échec).

Une <u>variable aléatoire de Bernoulli</u> est une variable aléatoire X telle que $X(\Omega) = \{0,1\}$.

Une <u>loi de Bernoulli</u> est la loi de probabilité associée à une épreuve de Bernoulli ou à variable aléatoire de Bernoulli.

Si $p \in [0;1]$ est la probabilité de « succès » ou de (X = 1), p est appelé <u>paramètre</u> de la loi, qui est alors notée $\mathcal{B}(p)$. Pour une variable aléatoire de Bernoulli, X, on note $X \hookrightarrow \mathcal{B}(p)$ ou $X \sim \mathcal{B}(p)$.

c. Loi binomiale:

Définitions:

Un <u>schéma de Bernoulli</u> est une expérience aléatoire consistant à répéter une épreuve de Bernoulli plusieurs fois de suite et de manière indépendante.

Une <u>loi binomiale</u> est la loi suivie par la variable aléatoire donnant le nombre de succès à l'issue d'un schéma de Bernoulli. Si l'épreuve de Bernoulli est répétée n fois et p est le paramètre associé à l'épreuve, la loi binomiale est notée $\mathcal{B}(n,p)$ et n et p sont les <u>paramètres</u> de cette loi.

On note : $X \hookrightarrow \mathcal{B}(n, p)$ ou bien $X \sim \mathcal{B}(n, p)$.

Propriété:

Soit *X* une variable aléatoire suivant la loi binomiale $\mathcal{B}(n,p)$. On a pour tout $k \in [0,n]$:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Propriété :

Si $X_1, ..., X_n$ sont n variables aléatoires de Bernoulli mutuellement indépendantes et toutes de même paramètre p, alors $X_1 + ... + X_n$ suit la loi binomiale $\mathcal{B}(n, p)$.

III-2. Loi géométrique

Définition:

Si on répète indéfiniment et de manière indépendante une épreuve de Bernoulli de paramètre p, alors le rang d'apparition du premier succès suit une loi géométrique de paramètre p.

On note: $X \hookrightarrow \mathcal{G}(p)$ ou $X \sim \mathcal{G}(p)$.

Propriété:

Soit X une variable aléatoire suivant une loi géométrique de paramètre $p \in [0,1]$.

On a $X(\Omega) = \mathbb{N}^*$, et pour tout $k \in \mathbb{N}^*$:

$$P(X = k) = (1-p)^{k-1} p$$
.

Propriété:

Si une variable aléatoire X suit une loi géométrique de paramètre p, alors pour tout $n \in \mathbb{N}^*$, on a :

$$P(X > n) = (1 - p)^n$$
.

III-3. Loi de Poisson

Définition:

Une variable aléatoire X suit une <u>loi de Poisson de paramètre λ </u>, avec $\lambda \in \mathbb{R}_+^*$, si $X(\Omega) = \mathbb{N}$, et pour tout $n \in \mathbb{N}$:

$$P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}.$$

On note : $X \hookrightarrow \mathscr{P}(\lambda)$ ou $X \sim \mathscr{P}(\lambda)$.

IV - Série génératrice

IV-1. Fonction génératrice d'une variable aléatoire à valeurs dans N

Définition:

Soit *X* une variable aléatoire à valeurs dans \mathbb{N} .

La fonction ou série génératrice de X est la série entière :

$$G_X(t) = \sum_{n=0}^{+\infty} P(X=n)t^n.$$

Propriétés:

Le rayon de convergence d'une série génératrice G_X est au moins égal à 1 et G_X est continue sur [-1,1] et de classe C^{∞} sur]-1,1[(au moins).

La loi d'une variable aléatoire à valeurs dans № est entièrement caractérisée par sa fonction génératrice.

Propriété:

Si X_1 et X_2 sont deux variables aléatoires indépendantes à valeurs dans $\mathbb N$.

Quand les séries convergent, on a :

$$G_{X_1+X_2} = G_{X_1}G_{X_2}.$$

Le résultat se généralise à n variables aléatoires X_1, \dots, X_n mutuellement indépendantes :

$$G_{X_1+...+X_n}=G_{X_1}...G_{X_n}$$
.

IV-2. Série génératrice des lois usuelles

Propriété :

Soit *X* une variable aléatoire à valeurs entières.

- Si $X(\Omega)$ est fini de cardinal N et X suit une loi uniforme, alors $G_X(t) = \frac{1}{N} \sum_{n \in X(\Omega)} t^n$ sur \mathbb{R} .
- Si $X \hookrightarrow \mathcal{B}(p)$, $G_X(t) = pt + 1 p$ sur \mathbb{R} .
- Si $X \hookrightarrow \mathcal{B}(n,p)$, $G_X(t) = (pt+1-p)^n$.
- Si $X \hookrightarrow \mathcal{G}(p)$, $G_X(t) = \frac{pt}{1 (1 p)t}$ sur $\left] \frac{1}{1 p}, \frac{1}{1 p} \right[$.
- Si $X \hookrightarrow \mathscr{T}(\lambda)$, $G_X(t) = e^{\lambda(t-1)}$ sur \mathbb{R} .