TD du chapitre 14 : Espérance et variance

Exercice 1

<u>Temps d'attente du deuxième succès</u>. On répète, de façon indépendante, une expérience aléatoire à l'issue de laquelle on obtient un succès avec une probabilité $p \in]0,1[$. On note X (resp. Y) la variable aléatoire donnant le rang du premier (resp. deuxième) succès.

- 1) Retrouver la loi de X et son espérance.
- 2) Déterminer la loi conjointe du couple (X,Y).
- 3) En déduire la loi de Y. Déterminer sa fonction génératrice, son espérance et sa variance (si elles existent).

Exercice 2

Soient $a \in \mathbb{R}$, et X et Y deux variables aléatoires définies sur l'espace probabilisé (Ω, \mathcal{A}, P) , indépendantes, de même loi uniforme sur l'ensemble $E = \llbracket 0, n \rrbracket$. On pose Z = |X - Y| et $T = \inf(X, Y)$.

Sous réserve d'existence, on note E(A) l'espérance d'une variable aléatoire A.

- 1) a. Justifier l'existence des moments de tous ordres de Z et T.
 - b. Montrer que $E(Z) = \frac{n(n+2)}{3(n+1)}$.
 - c. En déduire E(T) et en donner un équivalent lorsque n tend vers l'infini.
- 2) Soit *U* une variable aléatoire à valeurs dans \mathbb{N} , telle qu'il existe $K \in \mathbb{N}^*$ vérifiant : $0 \le U \le K$.
 - a. Exprimer $\sum_{k=1}^{K} P(U \ge k)$ en fonction de l'espérance de U.
 - b. Calculer de même $\sum_{k=1}^{K} k^2 P(U \ge k)$ en fonction de E(U), $E(U^2)$ et $E(U^3)$.
- 3) a. Calculer pour tout $k \in \mathbb{N}$, la probabilité $P(T \ge k)$.
 - b. En utilisant la question 2.a, retrouver la valeur de E(T).
- 4) Calculer $E(Z^2)$ en fonction de la variance V(X) de la variable aléatoire X.

Exercice 3

On considère une suite infinie de lancers d'une pièce amenant pile avec la probabilité $p \in]0,1[$ et face avec la probabilité q=1-p. On appelle L la longueur de la première série de lancers ayant tous donné le même résultat.

- 1) Déterminer la loi de L.
- 2) Calculer l'espérance de *L*.
- 3) Montrer que $E(L) \ge 2$. Etudier le cas d'égalité.
- 4) Calculer la variance de L et en déduire ℓ tel que $L \le \ell$ avec une probabilité au moins égale à 0,99.

Exercice 4

Soit N un entier naturel supérieur ou égal à 2. On dispose d'un sac contenant N jetons numérotés de 1 à N dans lequel on peut effectuer une succession de tirages avec remise d'un jeton, en notant, à chaque fois, le numéro obtenu. Pour tout entier naturel n supérieur ou égal à 2, on note T_n le nombre aléatoire de numéros distincts obtenus au cours des n premiers tirages.

- 1) Pour $n \in \mathbb{N}^*$, quelles sont les valeurs prises par T_n ? Calculer $P(T_n = 1)$, $P(T_n = 2)$ et $P(T_n = n)$.
- 2) Soient $k, n \in \mathbb{N}^*$ avec $1 \le k \le N$. Déterminer une relation liant $P(T_{n+1} = k)$, $P(T_n = k)$ et $P(T_n = k 1)$.
- 3) Pour tout entier naturel n non nul, on considère le polynôme : $G_n(X) = \sum_{k=1}^n P(T_n = k)X^k$.
 - a. Prouver l'égalité: $NG_{n+1} = (X X^2)G_n' + NXG_n$.
 - b. Pour tout entier naturel $n \in \mathbb{N}^*$, en reliant l'espérance $E(T_n)$ à G_n , exprimer $E(T_{n+1})$ à l'aide de $E(T_n)$ et N, puis déterminer $E(T_n)$ en fonction de N et n.
 - c. Déterminer $\lim_{N\to+\infty} \frac{E(T_n)}{N}$.

Exercice 5

Soit (X_n) une suite de variables aléatoires mutuellement indépendantes suivant la même loi de Bernoulli de paramètre $p \in]0,1[$. On note pour tout n dans \mathbb{N}^* :

$$S_n = \frac{X_1 + ... + X_n}{n}$$
, $Y_n = \frac{X_{n+1} + X_n}{2}$ et $T_n = \frac{Y_1 + ... + Y_n}{n}$.

- 1) Montrer que pour tout réel $\varepsilon > 0$, $\lim_{n \to +\infty} P(|S_n p| \ge \varepsilon) = 0$.
- 2) Déterminer pour tout $n \in \mathbb{N}^*$, la loi et l'espérance de Y_n .
- 3) Pour m < n, Y_m et Y_n sont-elles indépendantes ?
- 4) Montrer que pour tout réel $\varepsilon > 0$, $\lim_{n \to +\infty} P(|T_n p| \ge \varepsilon) = 0$.

Exercice 6

Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- 1) Justifier que la série entière $\sum P(X > n)t^n$ a un rayon de convergence au moins égal à 1.
- 2) Pour $t \in]-1,1[$, exprimer sa somme H(t) en fonction de $G_X(t)$.
- 3) Donner une condition nécessaire et suffisante sur H pour que X soit d'espérance finie et, si c'est le cas, exprimer E(X) à l'aide de H.

Exercice 7

La variable aléatoire N donnant le nombre d'électrons produits dans une réaction suit une loi de Poisson de paramètre λ . Les électrons sont efficaces dans une proportion $p \in]0,1[$. On note X et Y les variables aléatoires donnant le nombre d'électrons efficaces et inefficaces respectivement.

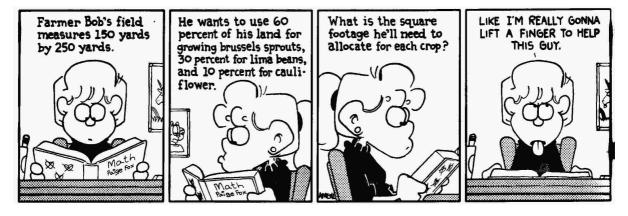
- 1) Donner la loi de X sous la condition (N = j).
- 2) Donner la loi conjointe de (X, N).
- 3) Donner la loi de X, son espérance et sa variance.
- 4) Les variables X et Y sont-elles indépendantes ?
- 5) Quel est le signe de la covariance de *X* et *N*.

Exercice 8

Soient X_1, \dots, X_n des variables de Bernoulli, de même paramètre $p \in]0,1[$ et mutuellement indépendantes.

On pose
$$U = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 et $M = UU^{\mathsf{T}}$.

- 1) Déterminer la loi de rg(M) et de tr(M).
- 2) Quelle est la probabilité que *M* soit une matrice de projection ?
- 3) On suppose n = 2, on note $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $S = V^{\mathsf{T}}MV$. Déterminer l'espérance et la variance de S.



Exercice 9 (Mines)

On pioche une poignée de jetons dans une urne en contenant n, numérotés de 1 à n. On admet que chaque poignée (y compris la poignée vide) a la même probabilité d'être tirée. Donner l'espérance de la variable aléatoire S donnant la somme des numéros tirés.

Exercice 10 (Mines)

Exercice 10 (Mines)
Soient $X \hookrightarrow \mathcal{B}(p)$, $Y \hookrightarrow \mathcal{G}(a)$ et $Z \hookrightarrow \mathcal{P}(\lambda)$ trois variables aléatoires indépendantes deux à deux.

Soient les variables aléatoires U et V, telles que pour tout $\omega \in \Omega$:

$$U(\omega) = \begin{cases} 0 & \text{si } X(\omega) = 0 \\ Y(\omega) & \text{si } X(\omega) = 1 \end{cases} \text{ et } V(\omega) = \begin{cases} Y(\omega) & \text{si } X(\omega) = 0 \\ Z(\omega) & \text{si } X(\omega) = 1 \end{cases}$$

- 1) Calculer l'espérance et la variance de *U*.
- 2) Calculer l'espérance et la variance de *V*.

