TD du chapitre 15 : Espaces préhilbertiens réels

Exercice 1

Soit $n \in \mathbb{N}^*$ et $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$. Pour tous $P, Q \in \mathbb{R}_n[X]$, on pose $(P \mid Q) = \sum_{k=0}^n P(a_k)Q(a_k)$.

1) Donner une condition nécessaire et suffisante simple pour qu'on ait ainsi défini un produit scalaire.

Dans la suite, on suppose cette condition vérifiée.

2) On pose pour tout
$$k \in [0, n]$$
, $L_k = \frac{\prod_{i \in [0, n], i \neq k} (X - a_i)}{\prod_{i \in [0, n], i \neq k} (a_k - a_i)}$ (polynômes de Lagrange).

Montrer que $(L_0, L_1, ..., L_n)$ est une base orthonormée de $\mathbb{R}_n[X]$ (muni du produit scalaire défini cidessus).

3) Calculer
$$\inf_{P \in F} \left(\sum_{k=0}^{n} P(a_k)^2 \right)$$
 avec $F = \left\{ P \in \mathbb{R}_n[X] \setminus \sum_{k=0}^{n} P(a_k) = 1 \right\}$.

Exercice 2

Soit $\varphi \in C([-1;1], \mathbb{R}_+^*)$. On pose $E = \mathbb{R}_n[X]$ avec $n \in \mathbb{N}^*$.

1) Montrer que $(P,Q) \mapsto (P \mid Q) = \int_{-1}^{1} PQ\phi$ est un produit scalaire sur E.

Dans la suite, on munit *E* de ce produit scalaire.

- 2) Prouver qu'il existe une unique base orthonormée de *E*, échelonnée en degrés et constituée de polynômes de coefficients dominants strictement positifs.
- 3) Dans cette question, on prend φ constante égale à 1 et on pose pour tout $k \in [0, n]$:

$$Q_k = \frac{d^k}{dX^k} \Big[(X^2 - 1)^k \Big]$$
 (polynôme de Legendre).

- a. Déterminer pour tout $k \in [0, n]$, le degré et le coefficient dominant de Q_k .
- b. En déduire que la famille $(Q_k)_{k \in \llbracket 0,n \rrbracket}$ est une base de E.
- c. Montrer que la famille $(Q_k)_{k \in [0,n]}$ est une base orthogonale de E.

Exercice 3

Soit E un $\mathbb R$ - espace vectoriel muni d'une norme, notée $\|\cdot\|$, vérifiant l'identité du parallélogramme.

Montrer que cette norme est hilbertienne.

Exercice 4

Soit E un espace euclidien de dimension n > 1, \mathcal{B} une base orthonormée de E et $(x_1, x_2, ..., x_n) \in E^n$. Montrer que :

$$\left|\det_{\mathcal{B}}\left(x_{1}, x_{2}, \dots, x_{n}\right)\right| \leq \left\|x_{1}\right\| \cdot \left\|x_{2}\right\| \cdot \cdot \cdot \left\|x_{n}\right\| \quad (Inégalité de \ Hadamard).$$

Etudier le cas d'égalité.

Exercice 5

Soit E un espace préhilbertien réel et f un endomorphisme de E qui conserve l'orthogonalité, c'est-à-dire tel que pour tout $(x, y) \in E^2$:

$$(x \mid y) = 0 \Rightarrow (f(x) \mid f(y)) = 0.$$

Montrer qu'il existe un réel positif k tel que pour tout $x \in E$, ||f(x)|| = k ||x||.

Etudier la réciproque.

Exercice 6

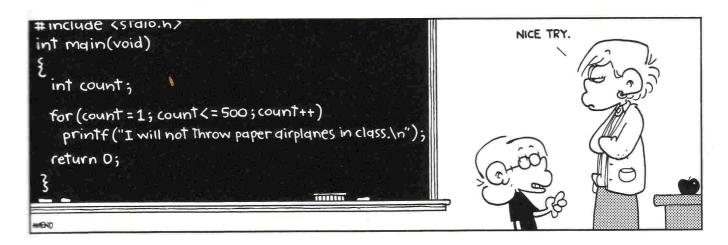
Soit $E = \mathcal{M}_n(\mathbb{R})$. On pose pour toutes matrices A et B de E, $\langle A, B \rangle = Tr({}^tAB)$.

- 1) Montrer que $(A, B) \mapsto \langle A, B \rangle$ définit un produit scalaire sur E. On note $\|.\|$ la norme associée.
- 2) Déterminer les matrices P de $GL_n(\mathbb{R})$ telles que, pour toute matrice A de E, $||A|| = ||P^{-1}AP||$.

Exercice 7

Soit $f \in C([0;1], \mathbb{R}_+)$. Montrer que :

$$4\left(\int_{0}^{1} x^{2} f(x) dx\right) \left(\int_{0}^{1} x f(x)^{2} dx\right) \leq \int_{0}^{1} f(x)^{3} dx.$$



Exercice 8 (Mines)

On pose pour tout $P \in \mathbb{R}[X]$:

$$\phi(P) = (X^2 - 1)P'' + (2X + 1)P'.$$

- 1) Montrer que l'application $(P,Q) \mapsto \langle P,Q \rangle = \int_{-1}^{1} \sqrt{\frac{1-t}{1+t}} P(t)Q(t) dt$ est bien définie sur $\mathbb{R}[X]^2$ et munit $\mathbb{R}[X]$ d'un produit scalaire.
- 2) Montrer que ϕ est symétrique pour ce produit scalaire.
- 3) Justifier que ϕ induit un endomorphisme de $\mathbb{R}_n[X]$ et montrer que cet endomorphisme induit est diagonalisable et que l'on peut former une base orthogonale de vecteurs propres (P_0, P_1, \dots, P_n) telle que pour tout $k \in [0, n]$, deg $P_k = k$.

Exercice 9 (X-ENS)

On note E l'ensemble des fonctions f continues de $\mathbb R$ dans $\mathbb R$ telles que $\int_{\mathbb R} f^2$ existe.

1) Montrer que $(f,g) \mapsto \langle f,g \rangle = \int_{-\infty}^{\infty} f(t)g(t) dt$ est bien définie et munit E d'un produit scalaire.

Soient $(\varphi_n)_{n\in\mathbb{N}^*}$ une suite de E et, pour tout $n\in\mathbb{N}^*$, $Q_n = (\langle \varphi_i, \varphi_j \rangle)_{i,j\in[1,n]^2} \in \mathcal{M}_n(\mathbb{R})$.

On suppose qu'il existe $r \in \mathbb{N}^*$ tel que Q_r soit inversible.

- 2) Montrer que la plus petite valeur propre de Q_r est strictement positive.
- 3) Prouver que $\varphi_{r+1} \in \text{Vect}(\varphi_1, ..., \varphi_r)$ si et seulement si Q_{r+1} est non inversible.
- 4) On suppose que pour tout $(i, j, k) \in \mathbb{N}^* \times \mathbb{N}^* \times \mathbb{N}$, $\langle \varphi_{i+k}, \varphi_{j+k} \rangle = \langle \varphi_i, \varphi_j \rangle$ et Q_{r+1} non inversible. Montrer que pour tout $n \in \mathbb{N}^*$, $\varphi_n \in \text{Vect}(\varphi_1, \dots, \varphi_r)$.

