Corrigé du DS n° 2

Mines-Ponts - 2006 - MP – Maths 2

I. Quelques propriétés des racines de P_n

Q1. La fonction cot est définie et dérivable sur $]0,\pi[$ comme quotient de telles fonctions et pour tout $x \in]0,\pi[$, on a $\cot' x = \frac{-\sin x \sin x - \cos x \cos x}{\sin^2 x} = \frac{-1}{\sin^2 x} < 0$.

Ainsi, sur $]0,\pi[$, cot continue (car dérivable) et strictement décroissante de $\lim_{x\to 0^+} \cot x = +\infty$ à $\lim_{x\to \pi^-} \cot x = -\infty$. Avec le théorème de la bijection continue, on peut alors conclure que :

La fonction cot réalise une bijection de $\left]\,0\,,\pi\,\right[\,\,sur\,\,\right]-\infty\,,+\infty\,\big[=\mathbb{R}$.

Q2. Soit $n \in \mathbb{N}^*$. On a $P_n = X(X - 1)...(X - n)$, donc pour tout $k \in [0, n]$, $P_n(k) = 0$.

Ainsi, pour tout $k \in [0, n-1]$:

- la fonction polynomiale $x \mapsto P_n(x)$ est continue sur [k, k+1] et dérivable sur]k, k+1[;
- $P_n(k) = P_n(k+1) = 0$.

D'après le théorème de Rolle, il existe $x_{n,k} \in]k, k+1[$ tel que $P_n'(x_{n,k}) = 0$.

On a alors $0 < x_{n,0} < 1 < x_{n,1} < ... < k < x_{n,k} < k+1 < ... < n-1 < x_{n,n-1} < n$, donc les $x_{n,k}$ sont deux à deux distincts. On a ainsi trouvé n racines réelles distinctes de P_n .

Or, $\deg P_n = n+1 \ge 2$, donc $\deg P_n' = n \ge 1$ et ainsi, P_n' admet au plus n racines réelles distinctes et donc ne peut pas admettre plus d'une racine comprise strictement entre k et k+1. Finalement :

Pour tout $k \in [0, n-1]$, P_n admet exactement une racine réelles $x_{n,k}$ dans $k \in [0, n-1]$, $k \in [0, n-1]$, admet exactement une racine réelles $x_{n,k}$ dans $k \in [0, n-1]$.

Q3. On a $P_n' = \sum_{k=0}^n \prod_{i=0, i \neq k}^n (X-i)$ et pour tout $k \in [0, n]$, $\prod_{i=0, i \neq k}^n (X-i) = X^n - \left(\sum_{i=0, i \neq k}^n i\right) X^{n-1} + \dots$

Donc:

$$P_{n}' = \sum_{k=0}^{n} \left[X^{n} - \left(\sum_{i=0, i \neq k}^{n} i \right) X^{n-1} + \dots \right] = (n+1)X^{n} - \left(\sum_{k=0}^{n} \left(\sum_{i=0, i \neq k}^{n} i \right) \right) X^{n-1} + \dots \right]$$

Et:

$$\sum_{k=0}^{n} \left(\sum_{i=0, i \neq k}^{n} i \right) = \sum_{k=0}^{n} \left(\sum_{i=0}^{n} i - k \right) = \sum_{k=0}^{n} \left(\frac{n(n+1)}{2} - k \right)$$

$$= (n+1) \frac{n(n+1)}{2} - \sum_{k=0}^{n} k = (n+1) \frac{n(n+1)}{2} - \frac{n(n+1)}{2} = \frac{n^2(n+1)}{2}$$

Ainsi:

$$P_n' = (n+1)X^n - \frac{n^2(n+1)}{2}X^{n-1} + \dots$$

Sachant que les racines de P_n ' sont les $x_{n,k}$ pour $k \in [0, n-1]$, on a alors avec la formule de Viète donnant la somme des racines :

$$\sum_{k=0}^{n-1} x_{n,k} = \frac{n^2(n+1)}{2}.$$

Soit:

$$\sum_{k=0}^{n-1} x_{n,k} = \frac{n^2}{2}$$

Alors,
$$\sum_{k=0}^{n-1} \alpha_{n,k} = \sum_{k=0}^{n-1} (x_{n,k} - k) = \sum_{k=0}^{n-1} x_{n,k} - \sum_{k=0}^{n-1} k = \frac{n^2}{2} - \frac{n(n-1)}{2}, \text{ soit}:$$

$$\left[\sum_{k=0}^{n-1} \alpha_{n,k} = \frac{n}{2} \right]$$

Q4. On a $P_n = \prod_{k=0}^{n} (X - k)$, donc:

$$P_n(n-X) = \prod_{k=0}^n ((n-X)-k) = \prod_{k=0}^n (-X+n-k) = (-1)^{n+1} \prod_{k=0}^n (X-(n-k)).$$

Et en réindexant (k' = n - k renommé k), on obtient $\prod_{k=0}^{n} (X - (n-k)) = \prod_{k=0}^{n} (X - k) = P_n(X)$, ce qui donne :

$$P_n(n-X) = (-1)^{n+1} P_n(X)$$
.

En dérivant, on obtient $-P_n'(n-X) = (-1)^{n+1}P_n'(X)$, soit $P_n'(n-X) = (-1)^n P_n'(X)$.

On a alors pour tout $k \in [0, n-1]$, $P_n'(n-x_{n,k}) = (-1)^n P_n'(x_{n,k}) = 0$ et:

$$k < x_{n,k} < k+1 \iff n-1-k < n-x_{n,k} < n-k$$
.

Donc, $n-x_{n,k}$ est l'unique racine de P_n ' strictement comprise entre n-1-k et n-1-k+1, soit, pour tout $k \in [0, n-1]$:

$$x_{n,n-1-k} = n - x_{n,k}$$

Q5. Pour tout $k \in [0, n-1]$, on a $x_{n,k} + x_{n,n-1-k} = n$, donc:

$$\alpha_{n,k} + \alpha_{n,n-1-k} = x_{n,k} - k + x_{n,n-1-k} - (n-1-k) = x_{n,k} + x_{n,n-1-k} - k - n + 1 + k.$$

Soit:

$$\alpha_{n,k} + \alpha_{n,n-1-k} = 1$$

L'entier $n \ge 2$ est fixé.

Q6. D'après **Q2** et **Q3**, la fonction $x \mapsto P_n'(x)$ est polynomiale de degré n, de coefficient dominant n+1>0 polynomiale et admet n racines réelles distinctes $x_{n,0}, x_{n,1}, \dots, x_{n,n-1}$ (avec $k < x_{n,k} < k+1$ pour tout $k \in [0,n-1]$). On a donc pour tout $x \in \mathbb{R}$:

$$\lim_{x \to +\infty} P_n'(x) = (n+1) \prod_{k=0}^{n-1} (x - x_{n,k}).$$

Alors, P_n ' s'annule et change de signe en chaque $x_{n,k}$ avec :

- $P_n' > 0$ sur $]x_{n,n-1}, +\infty [$ (car $\lim_{x \to +\infty} P_n'(x) = +\infty$);
- P_n ' est du signe de P_n '(k), donc de $(-1)^{n-k}$, sur $]x_{n,k-1},x_{n,k}$ pour tout $k \in [1,n-1]$;
- P_n ' est du signe de P_n '(0), donc de $(-1)^n$, sur $]-\infty$, $x_{n,0}$ pour tout $k \in [1, n-1]$.

On obtient le tableau de variations de P_n suivant la parité de n.

• Si *n* est pair :

x	$-\infty$	0	$X_{n,0}$	1	$x_{n,1}$	 $x_{n,2k}$	2k + 1	$x_{n,2k+1}$	2k + 2		$x_{n,n-1}$	n	$+\infty$
$P_n'(x)$		+	0	_	0	0	-	0		_	0	+	
P_n	- ∞ ^	0	オ 、	0	7	 \		4 /	0		7	87	+ ∞

• Si *n* est impair :

Q7. Pour tout $k \in [0, n-1]$, on a:

$$(-1)^{n-k} P_n(x_{n,k}) = (-1)^{n-k} \prod_{j=0}^n (x_{n,k} - j)$$

$$= (-1)^{n-k} \prod_{j=0}^k (x_{n,k} - j) \prod_{j=k+1}^n (x_{n,k} - j) = \prod_{j=0}^k (x_{n,k} - j) \prod_{j=k+1}^n (j - x_{n,k})$$

Or, $k < x_{n,k} < k+1$, donc:

- pour tout $j \in [0, k], x_{n,k} j > 0$;
- pour tout $j \in [[k+1, n]], j-x_{n,k} > 0$.

Ainsi, pour tout $k \in [0, n-1]$:

$$(-1)^{n-k} P_n(x_{n,k}) > 0$$

Q8. On a bien:

$$P_n(X) = \left[X (X-1)...(X-(n-1)) \right] (X-n) = (X-n)P_{n-1}(X).$$

Donc:

$$P_{n}'(X) = P_{n-1}(X) + (X - n)P_{n-1}'(X)$$
.

Alors, pour tout $k \in [0, n-1]$, on a avec $P_{n-1}(x_{n-1,k}) = 0$:

$$P_{n}'(x_{n-1,k}) = P_{n-1}(x_{n-1,k}) + (x_{n-1,k} - n)P_{n-1}'(x_{n-1,k}) = P_{n-1}(x_{n-1,k}).$$

Si $n \ge 3$, alors $n-1 \ge 2$, et on a, d'après la question précédente, $(-1)^{n-1-k} P_{n-1}(x_{n-1,k}) > 0$, soit $(-1)^{n-k} P_n'(x_{n-1,k}) = (-1)^{n-k} P_{n-1}(x_{n-1,k}) < 0$ pour tout $k \in [0, n-2]$.

Pour n = 2, on a $P_2'(x_{1,0}) = P_1(x_{1,0}) = x_{1,0}(x_{1,0} - 1) < 0$ (car $0 < x_{1,0} < 1$).

Ainsi, pour tout $n \ge 2$ et tout $k \in [0, n-2]$:

$$(-1)^{n-k} P_n'(x_{n-1,k}) < 0$$

Q9. Soit $k \in [0, n-2]$. On a $x_{n-1,k}, x_{n,k} \in [n-1]$ k, k+1.

D'après la question **Q6**, P_n ' est du signe de $(-1)^{n-k}$ sur $]k, x_{n,k} [\subset]x_{n,k-1}, x_{n,k}[$ et du signe opposé sur $]x_{n,k}, k+1[\subset]x_{n,k}, x_{n,k+1}[$.

Alors, $(-1)^{n-k} P_n' > 0$ sur $] k, x_{n,k} [$ et $(-1)^{n-k} P_n' < 0$ sur $] x_{n,k}, k+1 [$.

Or, d'après la question précédente, $(-1)^{n-k}P_n'(x_{n-1,k}) < 0$, donc $x_{n-1,k} \in \left]x_{n,k}, k+1\right[$ et ainsi, pour tout $k \in \left[0, n-2\right]$:

$$x_{n,k} < x_{n-1,k}$$

Q10. On a bien:

$$P_n(X) = X [(X-1)(X-2)...(X-n)]$$

= $X [(X-1)((X-1)-1)...((X-1)-(n-1))] = X P_{n-1}(X-1)$

Donc:

$$P_{n}'(X) = P_{n-1}(X-1) + X P_{n-1}'(X-1)$$
.

Alors, pour tout $k \in [1, n-1]$, on a $k-1 \in [0, n-2]$ et avec $P_{n-1}(x_{n-1,k-1}) = 0$:

$$P_{n}'(1+x_{n-1,k-1}) = P_{n-1}(x_{n-1,k-1}) + \left(1+x_{n-1,k-1}\right)P_{n-1}'(x_{n-1,k-1}) = P_{n-1}(x_{n-1,k-1}).$$

D'après la question **Q7**, on a pour tout $k \in [1, n-1]$, $k-1 \in [0, (n-1)-1]$, donc :

$$(-1)^{n-k} P_{n-1}(x_{n-1,k-1}) = (-1)^{(n-1)-(k-1)} P_{n-1}(x_{n-1,k-1}) > 0.$$

Ainsi, pour tout $k \in [1, n-1]$:

$$(-1)^{n-k} P_n' (1+x_{n-1,k-1}) > 0$$

Q11. Soit $k \in [1, n-1]$, donc $k-1 \in [0, n-2]$.

On a $x_{n-1,k-1} \in]k-1, k[$, donc $1+x_{n-1,k-1} \in]k, k+1[$.

D'après la question **Q9**, $(-1)^{n-k} P_n' > 0$ sur $]k, x_{n,k} [$ et $(-1)^{n-k} P_n' < 0$ sur $]x_{n,k}, k+1 [$

Or, d'après la question précédente, $(-1)^{n-k}P_n'(1+x_{n-1,k-1})>0$, donc $1+x_{n-1,k-1}\in]k,x_{n,k}[$, soit pour tout $k\in [1,n-1]$:

$$1 + x_{n-1,k-1} < x_{n,k}$$

- **Q12.** On veut prouver que pour tout entier $n \ge 2$, on a $\alpha_{n,0} \le \alpha_{n,1} \le \alpha_{n,2} \le ... \le \alpha_{n,n-2} \le \alpha_{n,n-1}$, soit pour tout $k \in [0, n-2]$, $\alpha_{n,k} \le \alpha_{n,k+1}$. Or:
 - D'après la question **Q9**, pour tout $k \in [0, n-2]$, $x_{n,k} = \alpha_{n,k} + k < x_{n-1,k} = \alpha_{n-1,k} + k$, soit : $\alpha_{n,k} < \alpha_{n-1,k}$
 - D'après la question **Q11**, $1 + x_{n-1,k-1} = 1 + \alpha_{n-1,k-1} + k 1 = \alpha_{n-1,k-1} + k < x_{n,k} = \alpha_{n,k} + k$ pour tout $k \in [1, n-1]$, soit :

$$\alpha_{n-1,k-1} < \alpha_{n,k} .$$

Donc, quand $n \ge 3$ et pour tout $k \in [[1, n-2]]$, on a $\alpha_{n-1,k-1} < \alpha_{n,k} < \alpha_{n-1,k}$.

Ceci implique que pour tout entier $N=n-1\geq 2$ et pour tout $K=k-1\in \llbracket 0,N-2\rrbracket$:

$$\alpha_{N,K} < \alpha_{N,K+1}$$
.

Ainsi, on a bien:

 $\alpha_{n,k}$ croît lorsque k croît de 0 à n-1.

II. Un développement asymptotique

Remarquons que comme Γ est strictement positive et dérivable sur \mathbb{R}_+^* , Ψ est bien définie sur \mathbb{R}_+^* .

Q13. Pour tout entier $n \ge 2$, $n-1 \in \mathbb{R}_+^*$, donc on a $\Gamma(n) = (n-1)\Gamma(n-1)$ et $\Gamma(n-1) \ne 0$.

Ceci permet d'écrire :

$$\frac{\Gamma(n)}{\Gamma(n-1)} = n-1.$$

Par télescopage, on a alors :

$$\frac{\Gamma(n)}{\Gamma(1)} = \prod_{k=2}^{n} \frac{\Gamma(k)}{\Gamma(k-1)} = \prod_{k=2}^{n} (k-1) = (n-1)!.$$

Ainsi, pour tout entier $n \ge 2$:

$$\Gamma(n) = \Gamma(1)(n-1)!$$

Q14. D'après la formule de Stirling, on a $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, donc il existe une suite $(\varepsilon_n)_{n \in \mathbb{N}^*}$ de limite 1 et telle que pour tout $n \in \mathbb{N}^*$, $n! = \varepsilon_n \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

On a alors pour tout entier $n \ge 2$, $\Gamma(n) > 0$ et:

$$\frac{\ln\left(\Gamma(n)\right)}{n} = \frac{\ln\left(\Gamma(1)(n-1)!\right)}{n} = \frac{\ln\left(\Gamma(1)\right)}{n} + \frac{\ln\left((n-1)!\right)}{n}$$

$$= \frac{\ln\left(\Gamma(1)\right)}{n} + \frac{1}{n}\ln\left(\frac{n!}{n}\right) = \frac{\ln\left(\Gamma(1)\right)}{n} + \frac{1}{n}\ln\left(n!\right) - \frac{\ln n}{n}$$

$$= \frac{\ln\left(\Gamma(1)\right)}{n} + \frac{1}{n}\ln\left(\varepsilon_{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}\right) - \frac{\ln n}{n}$$

$$= \frac{\ln\left(\Gamma(1)\right)}{n} + \frac{1}{n}\left(\ln\varepsilon_{n} + \frac{1}{2}\ln\left(2\pi\right) + \frac{1}{2}\ln n + n\ln n - n\right) - \frac{\ln n}{n}$$

$$= \ln n - 1 - \frac{\ln n}{2n} + \frac{1}{n}\left(\ln\left(\Gamma(1)\right) + \ln\varepsilon_{n} + \frac{1}{2}\ln\left(2\pi\right)\right)$$

Or, $\ln \varepsilon_n \xrightarrow[n \to +\infty]{} 0$, donc $\ln (\Gamma(1)) + \ln \varepsilon_n + \frac{1}{2} \ln (2\pi) = o(\ln n)$. Avec $\frac{\ln n}{2n} = o(1)$, on obtient:

$$\frac{\ln(\Gamma(n))}{n} = \ln n - 1 - \frac{\ln n}{2n} + o\left(\frac{\ln n}{n}\right)$$

Q15. La fonction Γ est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$. En dérivant, on obtient :

$$\Gamma'(x+1) = x \Gamma'(x) + \Gamma(x).$$

Alors, pour tout $x \in \mathbb{R}_{+}^{*}$:

$$\Psi(x+1) = \frac{\Gamma'(x+1)}{\Gamma(x+1)} = \frac{x\Gamma'(x) + \Gamma(x)}{x\Gamma(x)} = \frac{x\Gamma'(x)}{x\Gamma(x)} + \frac{\Gamma(x)}{x\Gamma(x)}.$$

Soit, pour tout $x \in \mathbb{R}_+^*$:

$$\Psi(x+1) = \Psi(x) + \frac{1}{x}$$

Q16. Pour tout $n \in \mathbb{N}^*$:

$$\phi(n+1) - \phi(n) = \Psi(n+1) - \ln(n+1) - \Psi(n) + \ln n$$

$$= \Psi(n) + \frac{1}{n} - \Psi(n) - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

Donc:

$$\phi(n+1) - \phi(n) = \frac{1}{n} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) = \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Ainsi, $\phi(n+1) - \phi(n) \sim \frac{1}{2n^2}$ et la série positive $\sum \frac{1}{2n^2}$ converge. Donc, par comparaison avec une série à termes positifs :

La série de terme général $\phi(n+1) - \phi(n)$ converge.

Q17. La série de terme général $\phi(n+1) - \phi(n)$ converge, donc grâce au théorème liant suite et série :

La suite
$$(\phi(n))_{n \in \mathbb{N}^*}$$
 converge.

Q18. On a admis que la fonction Ψ est croissante, donc pour tout $x \in \mathbb{R}_+^*$:

$$\Psi(\lfloor x \rfloor) \le \Psi(x) \le \Psi(\lfloor x \rfloor + 1).$$

Comme $\ln \lfloor x \rfloor \le \ln x \le \ln (\lfloor x \rfloor + 1)$, on $a - \ln (\lfloor x \rfloor + 1) \le -\ln x \le -\ln \lfloor x \rfloor$ et donc :

$$\Psi\left(\left\lfloor x\right\rfloor\right) - \ln\left(\left\lfloor x\right\rfloor + 1\right) \le \Psi(x) - \ln x \le \Psi\left(\left\lfloor x\right\rfloor + 1\right) - \ln\left\lfloor x\right\rfloor.$$

Soit:

$$\phi(|x|) + \ln|x| - \ln(|x| + 1) \le \phi(x) \le \phi(|x| + 1) + \ln(|x| + 1) - \ln|x|$$

Ou encore:

$$\phi\left(\left\lfloor x\right\rfloor\right) - \ln\left(1 + \frac{1}{\left\lfloor x\right\rfloor}\right) \le \phi(x) \le \phi\left(\left\lfloor x\right\rfloor + 1\right) + \ln\left(1 + \frac{1}{\left\lfloor x\right\rfloor}\right).$$

Or,
$$\lim_{x \to +\infty} \phi(\lfloor x \rfloor) = \lim_{x \to +\infty} \phi(\lfloor x \rfloor + 1) = C$$
 et $\lim_{x \to +\infty} \ln\left(1 + \frac{1}{\lfloor x \rfloor}\right) = 0$, donc:
$$\lim_{x \to +\infty} \left[\phi(\lfloor x \rfloor) - \ln\left(1 + \frac{1}{\lfloor x \rfloor}\right)\right] = \lim_{x \to +\infty} \left[\phi(\lfloor x \rfloor + 1) + \ln\left(1 + \frac{1}{\lfloor x \rfloor}\right)\right] = C.$$

Par le théorème des gendarmes, on obtient alors :

$$\lim_{x \to +\infty} \phi(x) = C$$

Q19. On suppose $C \neq 0$. Comme $\lim_{x \to +\infty} \phi(x) = C$, pour tout réel $\varepsilon > 0$, il existe $A \in \mathbb{R}_+^*$ tel que pour tout réel $x \geq A$, on a $|\phi(x) - C| \leq \varepsilon$.

Quitte à remplacer A par 1 (si A < 1), on peut supposer que $A \ge 1$. Alors, pour tout réel $x \ge A$:

$$\left| \frac{1}{x} \int_{1}^{x} \left(\phi(t) - C \right) dt \right| \leq \frac{1}{x} \int_{1}^{x} \left| \phi(t) - C \right| dt \leq \frac{1}{x} \left(\int_{1}^{A} \left| \phi(t) - C \right| dt + \int_{A}^{x} \left| \phi(t) - C \right| dt \right)$$

$$\leq \frac{1}{x} \int_{1}^{A} \left| \phi(t) - C \right| dt + \frac{1}{x} \int_{A}^{x} \varepsilon dt = \frac{B}{x} + \frac{1}{x} \varepsilon \left(x - A \right) \leq \frac{B}{x} + \frac{1}{x} \varepsilon x = \frac{B}{x} + \varepsilon$$

avec $B = \int_{1}^{A} |\phi(t) - C| dt$.

Comme $\frac{B}{x} \xrightarrow{x \to +\infty} 0$, il existe $A' \in \mathbb{R}_{+}^{*}$ tel que pour tout réel $x \ge A'$, $\frac{B}{x} \le \varepsilon$.

Alors, pour tout $x \ge \max(A, A') \in \mathbb{R}_+^*$, on a $\left| \frac{1}{x} \int_1^x (\phi(t) - C) dt \right| \le 2\varepsilon$.

Ceci prouve que $\lim_{x \to +\infty} \frac{1}{r} \int_{1}^{x} (\phi(t) - C) dt = 0$. Or:

$$\frac{1}{x} \int_{1}^{x} \left(\phi(t) - C \right) dt = \frac{1}{x} \int_{1}^{x} \phi(t) dt - C + \frac{C}{x}.$$

Comme $\frac{C}{x} \xrightarrow{x \to +\infty} 0$, on obtient $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} \phi(t) dt = C$ et comme $C \neq 0$, on peut écrire :

$$\int_{1}^{x} \phi(t) dt \sim C x$$

Q20. Pour tout $x \in \mathbb{R}_+^*$:

$$\int_{1}^{x} \phi(t) dt = \int_{1}^{x} (\Psi(t) - \ln t) dt = \int_{1}^{x} \Psi(t) dt - \int_{1}^{x} \ln t dt = \int_{1}^{x} \frac{\Gamma'(t)}{\Gamma(t)} dt - \int_{1}^{x} \ln t dt.$$

Comme Γ est strictement positive et de classe C^1 sur \mathbb{R}_+^* , on peut écrire :

$$\int_{1}^{x} \phi(t) dt = \left[\ln \left(\Gamma(t) \right) - t \ln t + t \right]_{1}^{x} = \ln \left(\Gamma(x) \right) - x \ln x + x - \ln \left(\Gamma(1) \right) - 1.$$

Alors:

$$\frac{1}{x} \int_{1}^{x} \phi(t) dt = \frac{\ln \left(\Gamma(x) \right)}{x} - \ln x + 1 - \frac{\ln \left(\Gamma(1) \right) + 1}{x}.$$

Avec $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} \phi(t) dt = C$, on obtient: $\lim_{x \to +\infty} \left(\frac{\ln(\Gamma(x))}{x} - \ln x + 1 \right) = C$.

Ceci donne pour des valeurs entières : $\lim_{n \to +\infty} \left(\frac{\ln \left(\Gamma(n) \right)}{n} - \ln n + 1 \right) = C$

Or, d'après la question **Q14**, $\frac{\ln(\Gamma(n))}{n} - \ln n + 1 \sim -\frac{\ln n}{2n}$, donc $\lim_{n \to +\infty} \left(\frac{\ln(\Gamma(n))}{n} - \ln n + 1\right) = 0$ et ainsi, C = 0, ce qui contredit l'hypothèse $C \neq 0$.

Finalement, $C \neq 0$ mène à une contradiction, donc :

$$C = 0$$

Q21. Soit $x \in \mathbb{R}_+^*$. Pour tout $m \in \mathbb{N}$, on a avec la question **Q15**:

$$\Psi(x+m+1) - \Psi(x) = \sum_{j=0}^{m} (\Psi(x+j+1) - \Psi(x+j)) = \sum_{j=0}^{m} \frac{1}{x+j}.$$

Donc:

$$\Psi(x) + \sum_{j=0}^{m} \frac{1}{x+j} - \ln m = \Psi(x+m+1) - \ln m$$

$$= \Psi(x+m+1) - \ln (x+m+1) + \ln (x+m+1) - \ln m$$

$$= \Psi(x+m+1) - \ln (x+m+1) + \ln (1+\frac{x+1}{m})$$

Or, d'après la question précédente, $\lim_{m \to +\infty} (\Psi(x+m+1) - \ln(x+m+1)) = 0$ et comme on a aussi

 $\lim_{m \to +\infty} \ln \left(1 + \frac{x+1}{m} \right) = 0, \text{ on obtient pour tout } x \in \mathbb{R}_{+}^{*} :$

$$\lim_{m \to +\infty} \left[\Psi(x) + \sum_{j=0}^{m} \frac{1}{x+j} - \ln m \right] = 0$$

Q22. Pour tout $n \in \mathbb{N}^*$, la fonction f_n est bien définie sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $0 < \frac{1}{x+n} < 1$ et :

$$f_n(x) = \frac{1}{x+n} + \ln\left(1 - \frac{1}{x+n}\right) = h\left(\frac{1}{x+n}\right)$$

avec $h(t) = t + \ln(1-t)$ définie sur [0,1].

La fonction h est dérivable sur]0,1[en tant que somme de telles fonctions et pour tout $t \in]0,1[$:

$$h'(t) = 1 - \frac{1}{1-t} = -\frac{t}{1-t} < 0$$
.

Ainsi, h est strictement décroissante sur]0,1[.

Or, pour tout $n \in \mathbb{N}^*$, $x \mapsto \frac{1}{x+n}$ est strictement décroissante sur \mathbb{R}_+^* et à images dans]0,1[, donc f_n est strictement croissante sur \mathbb{R}_+^* .

De plus, $\lim_{x \to +\infty} f_n(x) = 0$ et quand $n \ge 2$, $\lim_{x \to 0} f_n(x) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$.

Ainsi, pour $n \ge 2$, f_n croît de $\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$ à 0, donc :

$$||f_n||_{\infty} = \sup_{\mathbb{R}_+^*} |f_n| = \left| \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) \right|.$$

Or, $\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$, donc $||f_n||_{\infty} \sim \frac{1}{n^2}$ et la série positive $\sum \frac{1}{2n^2}$ converge, donc $\sum ||f_n||_{\infty}$ converge et ainsi:

La série de fonctions $\sum_{n\geq 2} f_n$ converge normalement sur \mathbb{R}_+^* .

On a alors pour tout entier $n \ge 2$ et tout $x \in \mathbb{R}_+^*$:

$$\sum_{n=2}^{m} f_n(x) = \sum_{n=2}^{m} \left[\frac{1}{x+n} + \ln(x+n-1) - \ln(x+n) \right]$$

$$= \sum_{n=2}^{m} \frac{1}{x+n} + \sum_{n=2}^{m} \left[\ln(x+n-1) - \ln(x+n) \right]$$

$$= \sum_{n=2}^{m} \frac{1}{x+n} + \ln(x+1) - \ln(x+m)$$

$$= \sum_{n=0}^{m} \frac{1}{x+n} - \ln m - \frac{1}{x} - \frac{1}{x+1} + \ln m + \ln(x+1) - \ln(x+m)$$

$$= \left(\sum_{n=0}^{m} \frac{1}{x+n} - \ln m \right) - \frac{1}{x} - \frac{1}{x+1} + \ln(x+1) - \ln\left(1 + \frac{x}{m}\right)$$

D'après la question précédente, $\lim_{m \to +\infty} \left[\sum_{n=0}^{m} \frac{1}{x+n} - \ln m \right] = -\Psi(x)$ et on a $\lim_{m \to +\infty} \ln \left(1 + \frac{x}{m} \right) = 0$,

donc $\lim_{m \to +\infty} \left[\sum_{n=2}^{m} f_n(x) \right] = -\Psi(x) - \frac{1}{x} - \frac{1}{x+1} + \ln(x+1)$, soit pour tout $x \in \mathbb{R}_+^*$:

$$\sum_{n=2}^{+\infty} f_n(x) = -\Psi(x) - \frac{1}{x} - \frac{1}{x+1} + \ln(x+1)$$

III. Comportement asymptotique des $\alpha_{n,k}$

Q23. La fonction $x \mapsto P_n(x)$ est définie et dérivable sur \mathbb{R} et s'annule en 0, 1, ..., n. Donc, la fonction $h: x \mapsto \ln |P_n(x)|$ est définie et dérivable sur $\mathbb{R} \setminus \llbracket 0, n \rrbracket$.

Pour tout $x \in \mathbb{R} \setminus [0, n]$, on a $h(x) = \ln |P_n(x)| = \ln |x(x-1)...(x-n)| = \sum_{j=0}^n \ln |x-j|$, donc:

$$h'(x) = \frac{P_n'(x)}{P_n(x)} = \sum_{i=0}^n \frac{1}{x-j}.$$

Or, pour tout $k \in [0, n-1]$, $x_{n,k} \in \mathbb{R} \setminus [0, n]$ et $P_n'(x_{n,k}) = 0$, donc:

$$h'(x_{n,k}) = \frac{P_n'(x_{n,k})}{P_n(x_{n,k})} = 0 = \sum_{j=0}^n \frac{1}{x_{n,k} - j}.$$

Avec $x_{n,k} = \alpha_{n,k} + k$, on obtient :

$$\sum_{j=0}^{n} \frac{1}{\alpha_{n,k} + k - j} = 0 \iff \sum_{j=0}^{k} \frac{1}{\alpha_{n,k} + k - j} + \sum_{j=k+1}^{n} \frac{1}{\alpha_{n,k} + k - j} = 0.$$

En posant j' = k - j dans la première somme et j'' = j - k - 1, on obtient :

$$\sum_{j'=0}^k \frac{1}{\alpha_{n,k}+j'} + \sum_{j''=0}^{n-k-1} \frac{1}{\alpha_{n,k}-j''-1} = \sum_{j'=0}^k \frac{1}{\alpha_{n,k}+j'} - \sum_{j''=0}^{n-k-1} \frac{1}{-\alpha_{n,k}+j''+1} = 0 \; .$$

Soit pour tout $k \in [0, n-1]$:

$$\sum_{j=0}^{k} \frac{1}{\alpha_{n,k} + j} - \sum_{j=0}^{n-k-1} \frac{1}{(1 - \alpha_{n,k}) + j} = 0$$

Q24. Soit $t \in]0,1[$ fixé. Pour tout $n \in \mathbb{N}^*$, on a:

$$nt-1 < \mid nt \mid \le nt$$
 et $n(1-t) \le n - \mid nt \mid < n(1-t) + 1$.

Comme t > 0 et 1-t > 0, on a :

$$\lim_{n \to +\infty} \lfloor nt \rfloor = \lim_{n \to +\infty} (n - \lfloor nt \rfloor) = +\infty.$$

On reprend la série de fonctions $\sum_{n\geq 2} f_n$ de la question **Q22**.

On a vu que cette série converge normalement, donc uniformément, sur $\operatorname{\mathbb{R}}^*_+$, de somme :

$$\sum_{n=2}^{+\infty} f_n : x \mapsto -\Psi(x) - \frac{1}{x} - \frac{1}{x+1} + \ln(x+1).$$

Pour tout entier $n \ge 2$, posons :

$$a_n = \sup_{x \in \mathbb{R}_+^*} \left| -\Psi(x) - \frac{1}{x} - \frac{1}{x+1} + \ln(x+1) - \sum_{k=2}^n f_k(x) \right| = \sup_{x \in \mathbb{R}_+^*} \left| -\Psi(x) - \sum_{k=0}^n \frac{1}{x+k} + \ln(x+n) \right|.$$

La convergence uniforme de $\sum_{n\geq 2} f_n$ donne $\lim_{n\to +\infty} a_n = 0$.

Pour tout entier n tel que $\lfloor nt \rfloor \ge 2$ et $n - \lfloor nt \rfloor \ge 2$ (ce qui est possible car $\lim_{n \to +\infty} \lfloor nt \rfloor = +\infty$ et $\lim_{n \to +\infty} (n - \lfloor nt \rfloor) = +\infty$), on peut écrire, avec $u_n = \alpha_{n, \lfloor nt \rfloor} \in \left] 0, 1 \right[\subset \mathbb{R}_+^*$ et $1 - u_n \in \left] 0, 1 \right[\subset \mathbb{R}_+^*$:

$$\left| -\Psi(u_n) - \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{u_n + k} + \ln\left(u_n + \lfloor nt \rfloor\right) \right| \le a_{\lfloor nt \rfloor}$$

$$\left| -\Psi(1 - u_n) - \sum_{k=0}^{n - \lfloor nt \rfloor - 1} \frac{1}{(1 - u_n) + k} + \ln\left(1 - u_n + n - \lfloor nt \rfloor - 1\right) \right| \le a_{n - \lfloor nt \rfloor - 1}$$

Or, avec la question précédente, on a :

$$\begin{split} & \left[-\Psi(u_n) - \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{u_n + k} + \ln\left(u_n + \lfloor nt \rfloor\right) \right] - \left[-\Psi(1 - u_n) - \sum_{k=0}^{n - \lfloor nt \rfloor - 1} \frac{1}{(1 - u_n) + k} + \ln\left(1 - u_n + n - \lfloor nt \rfloor - 1\right) \right] \\ & = -\Psi(u_n) + \Psi(1 - u_n) - \left(\sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{\alpha_{n, \lfloor nt \rfloor} + k} - \sum_{k=0}^{n - \lfloor nt \rfloor - 1} \frac{1}{(1 - \alpha_{n, \lfloor nt \rfloor}) + k} \right) \\ & \qquad \qquad + \ln\left(u_n + \lfloor nt \rfloor\right) - \ln\left(1 - u_n + n - \lfloor nt \rfloor - 1\right) \\ & = -\Psi(u_n) + \Psi(1 - u_n) + \ln\left(\lfloor nt \rfloor\right) + \ln\left(\frac{u_n}{\lfloor nt \rfloor} + 1\right) - \ln\left(n - \lfloor nt \rfloor\right) - \ln\left(1 - \frac{u_n}{n - \lfloor nt \rfloor}\right) \\ & = -\Psi(u_n) + \Psi(1 - u_n) + \ln\left(\frac{\lfloor nt \rfloor}{n - \lfloor nt \rfloor}\right) + \ln\left(\frac{u_n}{\lfloor nt \rfloor} + 1\right) - \ln\left(1 - \frac{u_n}{n - \lfloor nt \rfloor}\right) \end{split}$$

Et:

$$\begin{split} & \left[-\Psi(u_{n}) - \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{u_{n} + k} + \ln\left(u_{n} + \lfloor nt \rfloor\right) \right] - \left[-\Psi(1 - u_{n}) - \sum_{k=0}^{n - \lfloor nt \rfloor - 1} \frac{1}{(1 - u_{n}) + k} + \ln\left(1 - u_{n} + n - \lfloor nt \rfloor - 1\right) \right] \\ & \leq \left| -\Psi(u_{n}) - \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{u_{n} + k} + \ln\left(u_{n} + \lfloor nt \rfloor\right) \right| + \left| -\Psi(1 - u_{n}) - \sum_{k=0}^{n - \lfloor nt \rfloor - 1} \frac{1}{(1 - u_{n}) + k} + \ln\left(1 - u_{n} + n - \lfloor nt \rfloor - 1\right) \right| \\ & \leq a_{\lfloor nt \rfloor} + a_{n - \lfloor nt \rfloor - 1} \end{split}$$

Pour tout entier n assez grand:

$$\left| -\Psi(u_n) + \Psi(1-u_n) + \ln\left(\frac{\lfloor nt \rfloor}{n-\lfloor nt \rfloor}\right) + \ln\left(\frac{u_n}{\lfloor nt \rfloor} + 1\right) - \ln\left(1 - \frac{u_n}{n-\lfloor nt \rfloor}\right) \right| \le a_{\lfloor nt \rfloor} + a_{n-\lfloor nt \rfloor-1}.$$

Or, $\lim_{n \to +\infty} \left(a_{\lfloor nt \rfloor} + a_{n-\lfloor nt \rfloor - 1} \right) = 0$, donc:

$$\lim_{n \to +\infty} \left(\Psi(u_n) - \Psi(1 - u_n) + \ln \left(\frac{n - \lfloor nt \rfloor}{\lfloor nt \rfloor} \right) - \ln \left(\frac{u_n}{\lfloor nt \rfloor} + 1 \right) + \ln \left(1 - \frac{u_n}{n - \lfloor nt \rfloor} \right) \right) = 0.$$

Comme $0 < u_n < 1$, $\lim_{n \to +\infty} \lfloor nt \rfloor = +\infty$ et $\lim_{n \to +\infty} (n - \lfloor nt \rfloor) = +\infty$, on a:

$$\lim_{n \to +\infty} \left(\ln \left(\frac{u_n}{\lfloor nt \rfloor} + 1 \right) - \ln \left(1 - \frac{u_n}{n - \lfloor nt \rfloor} \right) \right) = 0.$$

D'où:

$$\lim_{n \to +\infty} \left(\Psi(u_n) - \Psi(1 - u_n) + \ln \left(\frac{n - \lfloor nt \rfloor}{\lfloor nt \rfloor} \right) \right) = 0.$$

Et enfin, pour n assez grand, on a $\begin{cases} 0 < nt - 1 < \lfloor nt \rfloor \le nt \\ 0 < n(1-t) \le n - \lfloor nt \rfloor < n(1-t) + 1 \end{cases}$, donc:

$$\frac{n(1-t)}{nt} \le \frac{n-\lfloor nt \rfloor}{\lfloor nt \rfloor} < \frac{n(1-t)+1}{nt-1} \iff \frac{1-t}{t} \le \frac{n-\lfloor nt \rfloor}{\lfloor nt \rfloor} < \frac{1-t+\frac{1}{n}}{t-\frac{1}{n}}.$$

Avec le théorème de gendarmes, on obtient $\lim_{n \to +\infty} \frac{n - \lfloor nt \rfloor}{\mid nt \mid} = \frac{1-t}{t}$, d'où :

$$\lim_{n \to +\infty} \left(\Psi(u_n) - \Psi(1 - u_n) + \ln\left(\frac{1 - t}{t}\right) \right) = 0$$

Q25. On vient de prouver que pour tout $t \in \left] 0,1 \right[, \lim_{n \to +\infty} \left(\Psi(u_n) - \Psi(1-u_n) \right) = \ln \left(\frac{t}{1-t} \right).$

L'énoncé donne pour tout $x \in \left]0,1\right[$, $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$ et comme toutes les fonctions en jeu ici sont dérivables sur $\left]0,1\right[$ (Γ est de classe C^1 sur \mathbb{R}_+^* , donc sur $\left]0,1\right[$), on peut écrire pour tout $x \in \left]0,1\right[$:

$$\Gamma'(x)\Gamma(1-x) - \Gamma(x)\Gamma'(1-x) = \pi \frac{\pi \cos(\pi x)}{\sin^2(\pi x)}.$$

Et comme $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)} \neq 0$, on a pour tout $x \in]0,1[$:

$$\Psi(x) - \Psi(1-x) = \frac{\Gamma'(x)}{\Gamma(x)} - \frac{\Gamma'(1-x)}{\Gamma(1-x)} = \frac{\Gamma'(x)\Gamma(1-x) - \Gamma(x)\Gamma'(1-x)}{\Gamma(x)\Gamma(1-x)} = \pi \frac{\cos(\pi x)}{\sin(\pi x)} = \pi \cot(\pi x).$$

Pour tout $n \in \mathbb{N}^*$, $u_n = \alpha_{n,|nt|} \in]0,1[$, donc on peut écrire :

$$\Psi(u_n) - \Psi(1 - u_n) = \pi \cot(\pi u_n).$$

D'après Q1, la fonction cot réalise une bijection continue de $]0,\pi[$ dans \mathbb{R} . Sa réciproque, notée arccot, est elle-même une bijection continue de \mathbb{R} dans $]0,\pi[$, vérifiant pour tout $x \in]0,1[$, $\operatorname{arccot}(\cot(\pi x)) = \pi x$. Ainsi, on peut écrire pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{1}{\pi} \operatorname{arccot} \left(\frac{1}{\pi} (\Psi(u_n) - \Psi(1 - u_n)) \right).$$

Par continuité de arccot sur \mathbb{R} et avec $\lim_{n \to +\infty} \frac{1}{\pi} (\Psi(u_n) - \Psi(1 - u_n)) = \frac{1}{\pi} \ln \left(\frac{t}{1 - t} \right)$, on obtient :

$$\lim_{n \to +\infty} u_n = \frac{1}{\pi} \operatorname{arccot} \left(\frac{1}{\pi} \ln \left(\frac{t}{1-t} \right) \right)$$

Problème 2

Q26. On $E = Vect(f_{-1}, f_0, f_1, ..., f_p)$, donc E est engendré par une famille finie, d'où :

La famille $(f_{-1}, f_0, f_1, ..., f_p)$ est génératrice de E.

Montrons par récurrence sur $p \in \mathbb{N}^*$ que cette famille est libre.

• *Initialisation*: Pour p = 1, soit $(\lambda_{-1}, \lambda_0, \lambda_1) \in \mathbb{R}^3$ tel que $\lambda_{-1} f_{-1} + \lambda_0 f_0 + \lambda_1 f_1 = 0$. Alors, pour tout $x \in J$, on a $\lambda_{-1} \ln(1+x) + \lambda_0 + \frac{\lambda_1}{1+x} = 0$. Or:

$$\lambda_{-1} \ln (1+x) + \lambda_0 + \frac{\lambda_1}{1+x} = \lambda_{-1} \left(x - \frac{x^2}{2} \right) + \lambda_0 + \lambda_1 \left(1 - x + x^2 \right) + \underset{x \to 0}{o} (x^2)$$

$$= \lambda_0 + \lambda_1 + \left(\lambda_{-1} - \lambda_1 \right) x + \left(\lambda_1 - \frac{\lambda_{-1}}{2} \right) x^2 + \underset{x \to 0}{o} (x^2)$$

Par unicité du développement limité, on obtient :

$$\begin{cases} \lambda_0 + \lambda_1 = 0 \\ \lambda_{-1} - \lambda_1 = 0 \\ 2\lambda_1 - \lambda_{-1} = 0 \end{cases} \iff \begin{cases} \lambda_0 = -\lambda_1 = 0 \\ \lambda_{-1} = \lambda_1 = 2\lambda_1 \end{cases} \iff \lambda_{-1} = \lambda_0 = \lambda_1 = 0.$$

Ainsi, la famille (f_{-1}, f_0, f_1) est libre et la propriété est vraie au rang 1.

• *Hérédité* : Supposons la propriété vraie à un rang $p-1 \in \mathbb{N}^*$. Soit $(\lambda_{-1}, \lambda_0, \lambda_1, ..., \lambda_p) \in \mathbb{R}^{p+2}$ tel que $\lambda_{-1} f_{-1} + \lambda_0 f_0 + \lambda_1 f_1 + ... + \lambda_p f_p = 0$.

On a alors pour tout $x \in J$:

$$\lambda_{-1} \ln (1+x) + \lambda_0 + \frac{\lambda_1}{1+x} + ... + \frac{\lambda_p}{(1+x)^p} = 0.$$

Soit:

$$\lambda_{-1}(1+x)^{p} \ln(1+x) + \lambda_{0}(1+x)^{p} + \lambda_{1}(1+x)^{p-1} + \dots + \lambda_{p-1}(1+x) + \lambda_{p} = 0.$$

Et en faisant tendre x vers – 1, on obtient $\lambda_p = 0$.

Alors, on a $\lambda_{-1}f_{-1} + \lambda_0f_0 + \lambda_1f_1 + ... + \lambda_{p-1}f_{p-1} = 0$ et par hypothèse de récurrence, la famille $(f_{-1}, f_0, f_1, ..., f_{p-1})$ est libre, donc $\lambda_{-1} = \lambda_0 = \lambda_1 = ... = \lambda_{p-1} = 0$.

Ainsi, $\lambda_{-1} = \lambda_0 = \lambda_1 = \dots = \lambda_p = 0$ et donc la famille $(f_{-1}, f_0, f_1, \dots, f_p)$ est libre.

La propriété est vraie au rang p.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour $p \in \mathbb{N}^*$.

Ainsi, la famille $(f_{-1}, f_0, f_1, ..., f_p)$ est libre et génératrice de E: c'est une base de E, donc la dimension de E est le cardinal de cette famille, soit :

$$\dim E = p + 2$$

Q27. L'application $\varphi: f \mapsto f(0)$ définie sur E est linéaire, c'est donc une forme une forme linéaire sur E. Elle est non nulle car $\varphi(f_0) = f_0(0) = 1$.

Ainsi, $\ker \varphi = \{ f \in E \setminus f(0) = 0 \} = F \text{ est un hyperplan de } E, \text{ donc } :$

$$F$$
 est bien un hyperplan de E .

Q28. L'application $g: x \mapsto (1+x)f'(x)$ est bien définie sur E car toutes les fonctions f_k sont dérivables sur J, donc toute fonction de E (qui est une combinaison linéaire des f_k) l'est aussi.

On a pour tout $u(f) = \frac{f'}{f_1}$ et les applications $v: h \mapsto \frac{h}{f_1}$ et $d: f \mapsto f'$ sont linaires (linéarité de la dérivation), donc $u = v \circ d$ l'est aussi.

Enfin:

- $f_{-1}' = f_1$, donc $u(f_{-1}) = f_0$;
- $f_0' = 0$, donc $u(f_0) = 0$;
- pour tout $k \in [1, p]$, $f_k' : x \mapsto -\frac{k}{(1+x)^{k+1}}$, donc $u(f_k) = -k f_k$.

Ainsi, pour tout $k \in [-1, p]$, $u(f_k) \in E$, donc:

$$u(E) = Vect(u(f_{-1}), u(f_0), u(f_1), \dots, u(f_p)) \subset E$$
.

Ainsi:

u est bien un endomorphisme de E.

Q29. On vient de voir que :

$$u(E) = Vect(u(f_{-1}), u(f_0), u(f_1), \dots, u(f_p)) = Vect(f_0, 0, -f_1, \dots, -pf_p).$$

Donc:

$$\operatorname{Im} u = \operatorname{Vect}(f_0, f_1, \dots, f_p) = G$$

Comme la famille $\left(f_{-1},f_{0},f_{1},\ldots,f_{p}\right)$ est libre, la famille $\left(f_{0},f_{1},\ldots,f_{p}\right)$ l'est aussi et donc :

$$rg(u) = \dim\left(Vect(f_0, f_1, \dots, f_p)\right) = p+1.$$

Par le théorème du rang, on a :

$$\dim \ker u = \dim E - rg(u) = (p+2) - (p+1) = 1$$
.

Or, on a vu que $u(f_0) = 0$, donc $Vect(f_0) \subset \ker u$ et comme $f_0 \neq 0$ (f_0 est la fonction constante $x \mapsto 1$), on a $\dim \left(Vect(f_0) \right) = 1 = \dim \ker u$, donc :

$$\ker u = Vect(f_0)$$

Q30. Par définition, $F \subset E$ et on vient de voir que $\operatorname{Im} u = G$, donc l'application $\tilde{u} : \begin{cases} F \to G \\ f \mapsto u(f) \end{cases}$ est bien définie et est linéaire. De plus :

- F est un hyperplan de E, donc dim $F = \dim E 1 = (p+2) 1 = p+1 = \dim G$;
- $\ker \tilde{u} = \ker u \cap F = Vect(f_0) \cap F = \{\lambda f_0 \setminus \lambda \in \mathbb{R}, \lambda f_0(0) = \lambda = 0\} = \{0\}.$

Ainsi, \tilde{u} est injective et ses espaces de départ et d'arrivée ont même dimension donc :

$$\tilde{u}: \begin{cases} F \to G \\ f \mapsto u(f) \end{cases}$$
 est un isomorphisme.

Q31. Prouvons par récurrence sur n que pour tout $n \in \mathbb{N}$, la fonction h_n est définie et continue sur J.

- *Initialisation*:
 - La fonction $x \mapsto \frac{f_{-1}(x)}{1+x} = \frac{\ln(1+x)}{1+x}$ est définie et continue sur J, donc $h_0: x \mapsto \int_0^x \frac{f_{-1}(t)}{1+t} dt$ est bien définie et de classe C^1 , donc continue sur J.

Ainsi, la propriété est vraie au rang n = 0.

• Hérédité:

Supposons la propriété vraie à un rang $n \in \mathbb{N}$, donc h_n est définie et continue sur J.

Alors, la fonction $x \mapsto \frac{h_n(x)}{1+x}$ est bien définie et continue sur J. Alors, $h_{n+1}: x \mapsto \int_0^x \frac{h_n(t)}{1+t} dt$ est bien définie et de classe C^1 , donc continue sur J.

La propriété est donc vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour $n \in \mathbb{N}$, autrement dit :

La suite de fonctions $(h_n)_{n\in\mathbb{N}}$, définies sur J, est correctement définie.

Q32. On a :

$$h_0: x \mapsto \int_0^x \frac{f_{-1}(t)}{1+t} dt = \int_0^x \frac{\ln(1+t)}{1+t} dt = \left[\frac{1}{2} \left(\ln(1+t) \right)^2 \right]_0^x = \frac{1}{2} \left(\ln(1+x) \right)^2$$

$$h_1: x \mapsto \int_0^x \frac{h_0(t)}{1+t} dt = \int_0^x \frac{1}{2} \frac{1}{1+t} \left(\ln(1+t) \right)^2 dt = \frac{1}{6} \left(\ln(1+x) \right)^3$$

Prouvons par récurrence sur n que pour tout $n \in \mathbb{N}$, on a $h_n : x \mapsto \frac{1}{(n+2)!} (\ln(1+x))^{n+2}$.

- Initialisation : On vient de la faire : la propriété est vraie au rang n = 0.
- *Hérédité* : Supposons la propriété vraie à un rang $n \in \mathbb{N}$. Alors, par hypothèse de récurrence, on a pour tout $x \in J$:

$$h_{n+1}(x) = \int_0^x \frac{h_n(t)}{1+t} dt = \int_0^x \frac{1}{(n+2)!} \frac{1}{1+t} \left(\ln(1+t)\right)^{n+2} dt$$
$$= \left[\frac{1}{(n+2)!} \frac{1}{n+3} \left(\ln(1+t)\right)^{n+3}\right]_0^x = \frac{1}{(n+3)!} \left(\ln(1+x)\right)^{n+3}$$

La propriété est donc vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour $n \in \mathbb{N}$, autrement dit, pour tout $n \in \mathbb{N}$:

$$h_n: x \mapsto \frac{1}{(n+2)!} (\ln(1+x))^{n+2}$$

Q33. Pour tout $x \in J$ fixé, la série $\sum \frac{1}{(n+2)!} (\ln(1+x))^{n+2}$ est une série exponentielle, donc converge avec :

$$\sum_{n=0}^{+\infty} h_n(x) = \sum_{n=0}^{+\infty} \frac{1}{(n+2)!} \left(\ln(1+x) \right)^{n+2} = \sum_{n=2}^{+\infty} \frac{1}{n!} \left(\ln(1+x) \right)^n$$

$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\ln(1+x) \right)^n - \frac{1}{0!} \left(\ln(1+x) \right)^0 - \frac{1}{1!} \left(\ln(1+x) \right)^1$$

$$= \exp\left(\ln(1+x) \right) - 1 - \ln(1+x) = 1 + x - 1 - \ln(1+x)$$

Ainsi:

La série $\sum h_n$ converge simplement sur J et a pour somme $S: x \mapsto \sum_{n=0}^{+\infty} h_n(x) = x - \ln(1+x)$.

Q34. La fonction S est une différence de deux fonctions de classe C^1 sur J, donc :

La fonction S est de classe C^1 (donc dérivable) sur J.

Q35. On a pour tout $n \in \mathbb{N}$ et tout $x \in J$:

$$\left| S(x) - \sum_{k=0}^{n} h_k(x) \right| = \left| \sum_{k=n+1}^{+\infty} h_k(x) \right| = \left| \sum_{k=n+1}^{+\infty} \frac{1}{(k+2)!} \left(\ln(1+x) \right)^{k+2} \right| = \left| \sum_{k=n+3}^{+\infty} \frac{1}{k!} \left(\ln(1+x) \right)^k \right|.$$

Alors, pour $x \in \mathbb{R}_+^* \subset J$, on a:

$$\left| S(x) - \sum_{k=0}^{n} h_k(x) \right| = \sum_{k=n+3}^{+\infty} \frac{1}{k!} \left(\ln(1+x) \right)^k \ge \frac{1}{(n+3)!} \left(\ln(1+x) \right)^{n+3}.$$

Comme $\lim_{x \to +\infty} \frac{1}{(n+3)!} \left(\ln(1+x) \right)^{n+3} = +\infty$, on a $\lim_{x \to +\infty} \left| S(x) - \sum_{k=0}^{n} h_k(x) \right| = +\infty$ par comparaison,

donc la fonction $S - \sum_{k=0}^{n} h_k$ n'est pas bornée sur J, donc ne possède pas de norme infinie sur cet intervalle. Ainsi :

La série $\sum h_n$ ne converge pas uniformément sur J.

Soit $[a,b] \subset J$. Pour tout $n \in \mathbb{N}$ et tout $x \in [a,b]$, on a :

$$\ln(1+a) \le \ln(1+x) \le \ln(1+b)$$
.

Donc, $|\ln(1+x)| \le \max(|\ln(1+a)|, |\ln(1+b)|) = M$ et:

$$|h_n(x)| = \frac{1}{(n+2)!} |\ln(1+x)|^{n+2} \le \frac{M^{n+2}}{(n+2)!}.$$

Ainsi, h_n est bornée sur [a,b] avec $\max_{x \in [a,b]} |h_n(x)| \le \frac{M^{n+2}}{(n+2)!}$. Comme la série $\sum \frac{M^{n+2}}{(n+2)!}$ converge, la série $\sum h_n$ vérifie l'hypothèse de domination sur [a,b], donc converge normalement sur [a,b] et ainsi :

La série $\sum h_n$ converge uniformément sur tout segment $[a,b] \subset J$.

Q36. Par définition de la suite $(h_n)_{n\in\mathbb{N}}$, on a pour tout $n\in\mathbb{N}$ et tout $x\in J$:

$$h'_{n+1}(x) = \frac{h_n(x)}{1+x} = \frac{1}{(n+2)!} \frac{\left(\ln(1+x)\right)^{n+2}}{1+x}.$$

Posons $R_n(x) = \sum_{k=n+1}^{+\infty} h'_k(x)$. On a alors pour tout $n \in \mathbb{N}$ et tout $x \in J$:

$$R_n(x) = \sum_{k=n+1}^{+\infty} h'_k(x) = h'_{n+1}(x) + R_{n+1}(x) = \frac{1}{(n+2)!} \frac{\left(\ln(1+x)\right)^{n+2}}{1+x} + R_{n+1}(x).$$

Et:

$$R_0(x) = \sum_{k=1}^{+\infty} h'_k(x) = \sum_{k=0}^{+\infty} h'_{k+1}(x) = \sum_{k=0}^{+\infty} \frac{h_k(x)}{1+x} = \frac{1}{1+x} \sum_{k=0}^{+\infty} h_k(x) = \frac{S(x)}{1+x} = 1 - \frac{1 + \ln(1+x)}{1+x}.$$

Par croissances comparées, $\frac{\ln(1+x)}{1+x} \xrightarrow{x \to +\infty} 0$, donc $\lim_{x \to +\infty} R_0(x) = 1$.

Prouvons par récurrence que pour tout $n \in \mathbb{N}$, $\lim_{x \to +\infty} R_n(x) = 1$.

- On vient de voir que la propriété est vraie pour n = 0.
- Supposons la propriété vraie à un rang $n \in \mathbb{N}$. On a alors $\lim_{x \to +\infty} R_n(x) = 1$ et par croissances comparées, on a $\lim_{x \to +\infty} \frac{\left(\ln(1+x)\right)^{n+2}}{1+x} = 0$.

Avec
$$R_{n+1}(x) = R_n(x) - \frac{1}{(n+2)!} \frac{\left(\ln(1+x)\right)^{n+2}}{1+x}$$
, on obtient alors:

$$\lim_{x \to +\infty} R_{n+1}(x) = 1 - 0 = 1.$$

La propriété est vraie au rang n+1.

Ainsi, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}$.

Ceci implique que dans le cas où $\sup_{x \in J} |R_n(x)|$ existe, on a $\sup_{x \in J} |R_n(x)| \ge 1$ et on ne peut donc avoir $\lim_{x \to +\infty} \sup_{x \in J} |R_n(x)| = 0$. Ceci permet d'affirmer que :

La série
$$\sum h'_n$$
 ne converge pas uniformément sur J .

Soit $[a,b] \subset J$. Avec à nouveau $M = \max(|\ln(1+a)|, |\ln(1+b)|)$, on a $0 < 1+a \le 1+x \le 1+b$, donc $0 < \frac{1}{1+x} \le \frac{1}{1+a}$ pour tout $x \in [a,b]$ et pour tout $n \in \mathbb{N}$:

$$|h'_{n+1}(x)| = \frac{|h_n(x)|}{1+x} \le \frac{1}{1+a} \frac{M^{n+2}}{(n+2)!}.$$

Ainsi, h'_{n+1} est bornée sur [a,b] avec $\max_{x \in [a,b]} |h'_{n+1}(x)| \le \frac{1}{1+a} \frac{M^{n+2}}{(n+2)!}$. Comme la série $\sum \frac{1}{1+a} \frac{M^{n+2}}{(n+2)!}$ converge, la série $\sum h'_n$ vérifie l'hypothèse de domination sur [a,b], donc converge normalement sur [a,b] et ainsi :

La série
$$\sum h'_n$$
 converge uniformément sur tout segment $[a,b] \subset J$.

Ainsi, pour tout $[a,b] \subset J$:

- pour tout $n \in \mathbb{N}$, h_n est de classe C^1 sur J;
- la série $\sum h_n$ converge simplement sur J, donc sur [a,b];
- la série $\sum h'_n$ converge-t-elle uniformément sur [a,b].

Ceci permet de conclure que la fonction S est de classe C^1 sur tout segment $[a,b] \subset J$, donc :

La fonction S est de classe C^1 sur J.