Corrigé du DS n° 3

Problème 1

A - Préliminaires

Q1. Pour tout $n \in \mathbb{N}^*$:

$$a_{n+1} - a_n = H_{n+1} - H_n - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln\left(\frac{n+1}{n}\right) = \frac{1}{n} \frac{1}{1 + \frac{1}{n}} - \ln\left(1 + \frac{1}{n}\right).$$

Donc:

$$a_{n+1} - a_n = \frac{1}{n} \left(1 - \frac{1}{n} + o_{n \to +\infty} \left(\frac{1}{n} \right) \right) - \left(\frac{1}{n} - \frac{1}{2n^2} + o_{n \to +\infty} \left(\frac{1}{n^2} \right) \right) = -\frac{1}{2n^2} + o_{n \to +\infty} \left(\frac{1}{n^2} \right).$$

Ainsi:

$$a_{n+1} - a_n \sim -\frac{1}{2n^2}$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ converge, la série $\sum \left(-\frac{1}{2n^2}\right)$ converge et par comparaison de séries de signe constant à partir d'un certain rang :

La série numérique
$$\sum (a_{n+1} - a_n)$$
 converge.

Q2. Comme la série $\sum (a_{n+1} - a_n)$ converge, on a par le théorème liant suite et série :

La suite
$$(a_n)_{n \in \mathbb{N}^*}$$
 converge.

Si on note γ la limite de la suite $(a_n)_{n \in \mathbb{N}^*}$, on a $a_n - \gamma = H_n - \ln n - \gamma = o_n - 1$ soit :

$$H_n = \ln n + \gamma + o(1)$$

Q3. Pour tout entier $n \ge 2$:

$$\frac{\ln(n+1)}{\ln n} = \frac{1}{\ln n} \left[\ln n + \ln\left(1 + \frac{1}{n}\right) \right] = 1 + \frac{1}{\ln n} \ln\left(1 + \frac{1}{n}\right).$$

Donc, $\frac{\ln{(n+1)}}{\ln{n}} \xrightarrow{n \to +\infty} 1$ et d'après la règle de d'Alembert appliquée aux séries entières :

Le rayon de convergence de la série entière $\sum (\ln n) x^n$ est 1.

Si D est le domaine de définition de f, la somme de la série entière $\sum (\ln n) x^n$, de rayon de convergence égal à 1, on a :

$$]-1,1[\subset D\subset [-1,1].$$

Or, les suites $(\ln n)_{n \in \mathbb{N}^*}$ et $((-1)^n \ln n)_{n \in \mathbb{N}^*}$ ne sont pas bornées, donc les séries $\sum \ln n$ et $\sum (\ln n)(-1)^n$ divergent grossièrement, et ainsi, la fonction f n'est définie ni en 1, ni en -1.

Ainsi:

Le domaine de définition de f est]-1,1[.

B – Étude de f en 1

Q4. La fonction f est la somme d'une série entière de rayon de convergence égal à 1, donc elle dérivable sur]-1,1[avec pour tout $x \in]-1,1[$, $f'(x) = \sum_{n=1}^{+\infty} (\ln n) n x^{n-1}$.

Pour tout $x \in [0;1[$ et pour tout $n \in \mathbb{N}^*$, $(\ln n)nx^{n-1} \ge 0$, donc $f'(x) \ge 0$ et f est croissante sur [0;1[. Le théorème de la limite monotone permet alors d'affirmer que f admet une limite lorsque x tend vers 1 par valeur inférieure avec $\lim_{x \to 1^-} f(x) \in \mathbb{R} \cup \{+\infty\}$..

Supposons que $\lim_{x \to \Gamma} f(x) = L \in \mathbb{R}$.

Alors, pour tout $x \in [0;1[$, on a $f(x) \le L$. Or, pour tout $x \in [0;1[$ et tout $n \in \mathbb{N}^*$, $(\ln n)x^n \ge 0$, donc pour tout $x \in [0;1[$ et tout $N \in \mathbb{N}^*$:

$$\left(\ln N\right)x^n \le \sum_{n=1}^{+\infty} \left(\ln n\right)x^n = f(x).$$

En passant à la limite quand $x \to 1^-$, on obtient alors pour tout $N \in \mathbb{N}^*$, $\ln N \le L$, ce qui est absurde car $\ln N \xrightarrow[N \to +\infty]{} + \infty$.

Ainsi, $\lim_{x \to 1^-} f(x) \in \mathbb{R}$ mène à une absurdité, donc :

$$\lim_{x \to 1^{-}} f(x) = + \infty$$

Q5. On a vu que $H_n = \ln n + \gamma + o(1)$ et $\ln n \xrightarrow[n \to +\infty]{} + \infty$, donc $\gamma + o(1) = \sum_{n \to +\infty} (\ln n)$ et :

$$H_n \sim \ln n$$
.

Or, on a vu dans la question **Q3**, que le rayon de convergence la série entière $\sum (\ln n) x^n$ est 1, donc par comparaison :

Le rayon de convergence la série entière $\sum H_n x^n$ est 1.

Q6. Le rayon de convergence deux séries entières $\sum x^n$ et $\sum \frac{x^n}{n}$ est égal à 1. On peut donc former le produit de Cauchy de leurs sommes sur]-1;1[.

En posant $u_0 = 0$ et pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n}$, on a pour tout $x \in]-1;1[$:

$$\left(\sum_{n=0}^{+\infty} u_n x^n\right) \left(\sum_{n=0}^{+\infty} x^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} u_k \times 1\right) x^n = \sum_{k=0}^{0} u_k + \sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} u_k\right) x^n = \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) x^n = \sum_{n=1}^{+\infty} H_n x^n = g(x).$$

Or, pour tout $x \in]-1;1[$, $\sum_{n=0}^{+\infty} u_n x^n = \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$ et $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$, donc:

$$\left(-\ln\left(1-x\right)\right)\left(\frac{1}{1-x}\right) = g(x).$$

Soit, pour tout $x \in]-1;1[$:

$$g(x) = \frac{\ln(1-x)}{x-1}$$

Q7. Pour tout $x \in [0;1[$:

$$|f(x) - g(x)| = \left| \sum_{n=1}^{+\infty} (\ln n) x^n - \sum_{n=1}^{+\infty} H_n x^n \right| = \left| \sum_{n=1}^{+\infty} (\ln n - H_n) x^n \right|.$$

Or, pour tout $n \in \mathbb{N}^*$, $\left| (\ln n - H_n) x^n \right| = \left| \ln n - H_n \right| x^n \le (\ln n) x^n + H_n x^n$ et les séries $\sum (\ln n) x^n$ et $\sum H_n x^n$ convergent, donc $\sum \left| (\ln n - H_n) x^n \right|$ converge et on peut écrire :

$$|f(x) - g(x)| \le \sum_{n=1}^{+\infty} |(\ln n - H_n)x^n| = \sum_{n=1}^{+\infty} |\ln n - H_n|x^n = \sum_{n=1}^{+\infty} |a_n|x^n$$
.

Or, la suite $(a_n)_{n \in \mathbb{N}^*}$ converge, donc est bornée et qu'il existe un réel M > 0 tel que $|a_n| \le M$ pour tout $n \in \mathbb{N}^*$. Alors, pour tout $x \in [0;1[$:

$$|f(x) - g(x)| \le \sum_{n=1}^{+\infty} M x^n \le \sum_{n=0}^{+\infty} M x^n = M \sum_{n=0}^{+\infty} x^n = \frac{M}{1-x}.$$

Finalement:

Il existe un réel
$$M > 0$$
 tel que pour tout $x \in [0;1[, |f(x) - g(x)| \le \frac{M}{1-x}]$.

Q8. D'après la question **Q6**, on a $g(x) = \frac{-\ln(1-x)}{1-x}$ pour tout $x \in]-1;1[$ et d'après la question précédente, $|f(x)-g(x)| \le \frac{M}{1-x}$ pour tout $x \in [0;1[$.

Or, $\lim_{x \to 1^{-}} \left[-\ln(1-x) \right] = +\infty$, donc $\frac{M}{1-x} = o(g(x))$ et ainsi, on peut écrire :

$$f(x) - g(x) = \underset{x \to \Gamma}{o} (g(x)) \iff f(x) = g(x) + \underset{x \to \Gamma}{o} (g(x)).$$

Soit:

$$f(x) \underset{\substack{x \to 1 \\ x < 1}}{\sim} g(x)$$

C – Étude de f en – 1

Q9. On a $c_n = -\ln\left(1 - \frac{1}{n}\right) - \frac{1}{n} = \frac{1}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) - \frac{1}{n} = \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$, donc $c_n \sim \frac{1}{2n^2}$.

Or le rayon de la série entière $\sum \frac{1}{n^2} x^n$ est le même que celui de $\sum x^n$, soit 1.

Par comparaison:

Le rayon de convergence de la série entière
$$\sum c_n x^n$$
 est 1.

Comme $c_n \sim \frac{1}{2n^2}$ et la série $\sum \frac{1}{2n^2}$ converge, les séries $\sum c_n$ et $\sum c_n(-1)^n$ convergent absolument, donc convergent et ainsi :

Le domaine de définition de h est [-1,1].

Q10. Pour tout entier $n \ge 2$:

$$\sum_{k=1}^{n} c_k = c_1 + \sum_{k=2}^{n} \left(-\ln\left(1 - \frac{1}{k}\right) - \frac{1}{k} \right) = -1 + \sum_{k=2}^{n} \left(\ln k - \ln\left(k - 1\right) - \frac{1}{k} \right)$$
$$= \sum_{k=2}^{n} \left(\ln k - \ln\left(k - 1\right) \right) - 1 - \sum_{k=2}^{n} \frac{1}{k} = \sum_{k=2}^{n} \left(\ln k - \ln\left(k - 1\right) \right) - \sum_{k=1}^{n} \frac{1}{k}$$

On a $\sum_{k=1}^{n} \frac{1}{k} = H_n$ et, par télescopage, $\sum_{k=2}^{n} (\ln k - \ln (k-1)) = \ln n - \ln 1 = \ln n$, donc:

$$\sum_{k=1}^{n} c_k = \ln n - H_n = -a_n.$$

Or, on a vu dans la question **Q2** que $(a_n)_{n\in\mathbb{N}^*}$ converge vers un réel γ , donc :

La série numérique $\sum c_n$ converge et sa somme vaut $-\gamma$.

Q11. Par concavité de la fonction ln, on a pour tout $h \in]-1, +\infty[$, $\ln(1+h) \le h$. Or, pour tout entier $n \ge 2$, on a on a $-\frac{1}{n} \in]-1, +\infty[$, donc $\ln\left(1-\frac{1}{n}\right) \le -\frac{1}{n}$, soit $c_n \ge 0$.

Pour tout $n \in \mathbb{N}^*$, notons $h_n : x \mapsto c_n x^n$, fonction polynômiale donc continue sur [-1,1].

Pour tout entier $n \ge 2$, on a $\max_{[-1,1]} |f_n| = c_n$ et on vient de voir que la série $\sum c_n$ converge.

Ceci implique que $\sum h_n$ converge normalement, donc uniformément, sur [-1,1].

Les hypothèses sont réunies pour conclure que $h = \sum_{k=1}^{+\infty} h_k$ est continue sur [-1,1] et ainsi :

La fonction h est continue en -1 et 1.

Q12. Soit $p \in \mathbb{N}^*$. On a pour tout entier $k \ge 2$, $c_k = \ln k - \ln (k-1) - \frac{1}{k}$ et:

$$\begin{split} \sum_{k=1}^{2p} (-1)^k c_k &= -c_1 + \sum_{k=2}^{2p} (-1)^k c_k = 1 + \sum_{k=2}^{2p} (-1)^k \left(\ln k - \ln (k-1) - \frac{1}{k} \right) \\ &= 1 + \sum_{k=2}^{2p} (-1)^k \ln k - \sum_{k=2}^{2p} (-1)^k \ln (k-1) - \sum_{k=2}^{2p} \frac{(-1)^k}{k} \\ &= \sum_{k=2}^{2p} (-1)^k \ln k + \sum_{k=2}^{2p} (-1)^{k-1} \ln (k-1) + 1 + \sum_{k=2}^{2p} \frac{(-1)^{k-1}}{k} \\ &= \sum_{k=1}^{2p} (-1)^k \ln k + \sum_{k=1}^{2p-1} (-1)^k \ln k + \sum_{k=1}^{2p} \frac{(-1)^{k-1}}{k} = 2 \sum_{k=1}^{2p} (-1)^k \ln k - \ln (2p) + \sum_{k=1}^{2p} \frac{(-1)^{k-1}}{k} \end{split}$$

Et:

$$\sum_{k=1}^{2p} (-1)^k \ln k = \sum_{k=1, k \text{ pair}}^{2p} \ln k - \sum_{k=1, k \text{ impair}}^{2p} \ln k = 2 \sum_{k=1, k \text{ pair}}^{2p} \ln k - \sum_{k=1}^{2p} \ln k$$

$$= 2 \sum_{k=1}^{p} \ln (2k) - \sum_{k=1}^{2p} \ln k = 2 \sum_{k=1}^{p} \ln 2 + 2 \sum_{k=1}^{p} \ln k - \sum_{k=1}^{2p} \ln k$$

$$= 2p \ln 2 + 2 \ln (p!) - \ln ((2p)!) = \ln \left(\frac{2^{2p} (p!)^2}{(2p)!} \right)$$

Ainsi:

$$\sum_{k=1}^{2p} (-1)^k c_k = 2 \ln \left(\frac{2^{2p} (p!)^2}{(2p)!} \right) - \ln (2p) + \sum_{k=1}^{2p} \frac{(-1)^{k-1}}{k} = \ln \left[\left(\frac{2^{2p} (p!)^2}{(2p)!} \right)^2 \frac{1}{2p} \right] + \sum_{k=1}^{2p} \frac{(-1)^{k-1}}{k}.$$

Soit:

$$\sum_{k=1}^{2p} (-1)^k c_k = \ln \left(\frac{2^{4p} (p!)^4}{2p ((2p)!)^2} \right) + \sum_{k=1}^{2p} \frac{(-1)^{k-1}}{k}$$

Q13. Avec la formule de Stirling, on a :

$$\frac{2^{4p} (p!)^4}{2p ((2p)!)^2} \sim \frac{2^{4p} \left(\sqrt{2\pi p} \left(\frac{p}{e}\right)^p\right)^4}{2p \left(\sqrt{4\pi p} \left(\frac{2p}{e}\right)^{2p}\right)^2} = \frac{\pi}{2}.$$

Par continuité de la fonction ln, on obtient alors :

$$\left(\frac{2^{4p}(p!)^4}{2p((2p)!)^2}\right) \xrightarrow{p\to+\infty} \ln\left(\frac{\pi}{2}\right).$$

D'après le rappel, on a $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln 2$, donc :

$$\sum_{k=1}^{2p} (-1)^k c_k \xrightarrow{p \to +\infty} \sum_{k=1}^{+\infty} (-1)^k c_k = \ln\left(\frac{\pi}{2}\right) + \ln 2.$$

Par ailleurs, on a pour tout $x \in]-1;1[, f(x) = \sum_{k=1}^{+\infty} (\ln n) x^{n}]$ et:

$$h(x) = \sum_{k=1}^{+\infty} c_n x^n = -x + \sum_{k=2}^{+\infty} \left(\ln n - \ln (n-1) - \frac{1}{n} \right) x^n.$$

Or, pour tout $x \in]-1;1[$, les séries $\sum (\ln n)x^n$, donc $\sum (\ln (n-1))x^n$, et $\sum \frac{x^n}{n}$ convergent, donc on peut écrire :

$$h(x) = \sum_{k=2}^{+\infty} (\ln n) x^n - \sum_{k=2}^{+\infty} (\ln (n-1)) x^n - x - \sum_{k=2}^{+\infty} \frac{x^n}{n} = \sum_{k=2}^{+\infty} (\ln n) x^n - x \sum_{k=2}^{+\infty} (\ln (n-1)) x^{n-1} - \sum_{k=1}^{+\infty} \frac{x^n}{n}$$

$$= \sum_{k=1}^{+\infty} (\ln n) x^n - x \sum_{k=1}^{+\infty} (\ln n) x^n - \sum_{k=1}^{+\infty} \frac{x^n}{n} = (1-x) \sum_{k=1}^{+\infty} (\ln n) x^n - \sum_{k=1}^{+\infty} \frac{x^n}{n} = (1-x) f(x) + \ln (1-x)$$

Et comme pour tout $x \in]-1;1[, 1-x \neq 0, \text{ on peut écrire}]$

$$f(x) = \frac{h(x) - \ln(1 - x)}{1 - x}.$$

Comme h est continue en -1 (Q11), on obtient alors :

$$\lim_{\substack{x \to -1 \\ x > -1}} f(x) = \lim_{\substack{x \to -1 \\ x > -1}} \frac{h(x) - \ln(1 - x)}{1 - x} = \frac{h(-1) - \ln 2}{2} = \frac{\sum_{k=1}^{+\infty} (-1)^k c_k - \ln 2}{2}.$$

Soit, avec $\sum_{k=1}^{+\infty} (-1)^k c_k = \ln\left(\frac{\pi}{2}\right) + \ln 2$:

$$\lim_{\substack{x \to -1 \\ x > -1}} f(x) = \frac{1}{2} \ln \left(\frac{\pi}{2} \right)$$

Problème 2

I Généralités

Q14. Soit
$$\varphi: \mathcal{X}_n \to \{0,1\}^{n^2}$$
; $A = (a_{i,j})_{i,j \in [1,n]} \mapsto (a_{1,1}, \dots, a_{1,n}, a_{2,1}, \dots, a_{2,n}, \dots, a_{n,1}, \dots, a_{n,n})$.

Une matrice étant parfaitement déterminée par ses coefficients, ϕ est une bijection.

Or, $\{0,1\}^{n^2}$ est un ensemble fini de cardinal 2^{n^2} . Donc :

$$X_n$$
 est un ensemble fini, de cardinal 2^{n^2} .

Q15. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{X}_2$$
 avec $a, b, c, d = 0$ ou 1.

On a ad = 0 ou 1 et bc = 0 ou 1, donc $\det M = ad - bc = -1$, 0 ou 1.

Alors, $M \in \mathcal{X}_2^I = \mathcal{X}_2 \cap GL_2(\mathbb{R})$ si et seulement si det M = -1 ou 1.

Considérons les deux cas.

- det M = ad bc = 1 si et seulement si ad = bc + 1.

 Or, $ad \le 1$ et $bc + 1 \ge 1$ (car $a, b, c, d \in \{0, 1\}$). Donc, ad = bc + 1 = 1, soit $\begin{cases} ad = 1 \\ bc = 0 \end{cases}$ ou encore $\begin{cases} a = d = 1 \\ b = 0 \text{ ou } c = 0 \end{cases}$. On obtient trois matrices : $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.
- det M = ad bc = -1 si et seulement si bc = ad + 1 et avec le même raisonnement que ci-dessus, on obtient $\begin{cases} b = c = 1 \\ a = 0 \text{ ou } d = 0 \end{cases}$ et les trois matrices : $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Finalement:

$$\mathcal{X}_{2}^{\prime} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

Les matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, sont symétriques réelles donc diagonalisables sur \mathbb{R} d'après le théorème spectral.

Les matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ sont triangulaires avec des 1 sur la diagonale, donc ont 1 pour seule valeur propre. Si elles étaient diagonalisables, elles seraient semblables à I_2 , donc égales à I_2 , ce qui est faux. Ainsi, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ ne sont pas diagonalisables sur $\mathbb R$.

Les matrices de
$$X_2'$$
 diagonalisables sur \mathbb{R} sont $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Q16. On a:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \operatorname{Vect}\left(\mathcal{X}_{2}^{I}\right)$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \operatorname{Vect}\left(\mathcal{X}_{2}^{I}\right)$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \operatorname{Vect}\left(\mathcal{X}_{2}^{I}\right)$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \operatorname{Vect}\left(\mathcal{X}_{2}^{I}\right)$$

Ainsi, les quatre vecteurs de la base canonique de $\mathcal{M}_2(\mathbb{R})$ appartiennent à $\operatorname{Vect}(X_2'(\mathbb{R}))$, donc :

L'ensemble \mathcal{X}_2^{\prime} engendre l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$.

Q17. Soit maintenant $n \ge 2$. On a $I_n \in \mathcal{X}_n^I$.

Notons $E_{i,j}$ les vecteurs de la base canonique de $\mathcal{M}_n(\mathbb{R})$ (avec $i, j \in [1, n]$).

Pour tous $i, j \in [1, n]$ tels que $i \neq j$, $I_n + E_{i,j}$ est une matrice dont tous les coefficients valent 0 ou 1 et triangulaire dont tous les coefficients diagonaux, donc inversible.

Ainsi,
$$I_n + E_{i,j} \in \mathcal{X}_n^{\prime}$$
 et donc, $E_{i,j} = (I_n + E_{i,j}) - I_n \in \text{Vect}(\mathcal{X}_n^{\prime})$.

Notons
$$J_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$
 et $(e_1, \dots, e_{n-1}, e_n)$ la base canonique de \mathbb{R}^n .

On a $\operatorname{Im} J_n = \operatorname{Vect}(e_n, e_1, \dots, e_{n-1}) = \mathbb{R}^n$, donc J_n est inversible et comme tous ses coefficients valent 0 ou $1, J_n \in \mathcal{X}_n^I$.

Pour tout
$$i \in [\![1,n]\!]$$
, $J_n + E_{i,i} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{X}_n \text{ et } :$

$$\operatorname{Im} \left(J_n + E_{i,i} \right) = \operatorname{Vect} \left(e_n, e_1, \dots, e_{i-2}, e_{i-1} + e_i, e_i, \dots, e_{n-1} \right)$$

$$= \operatorname{Vect} \left(e_n, e_1, \dots, e_{i-2}, e_{i-1}, e_i, \dots, e_{n-1} \right) = \mathbb{R}^n$$

Donc, $J_n + E_{i,i}$ est inversible et ainsi, $J_n + E_{i,i} \in \mathcal{X}_n^I$.

Alors,
$$E_{i,i} = (J_n + E_{i,i}) - J_n \in \text{Vect}(\mathcal{X}_n^I)$$
.

Finalement, tous les vecteurs de la base canonique de $\mathcal{M}_n(\mathbb{R})$ appartiennent à $\operatorname{Vect}(X_n^I)$, donc :

L'ensemble
$$\mathcal{X}_n^I$$
 engendre l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$.

Q18. Notons $(E_1, ..., E_{n-1}, E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

Par définition $\mathcal{P}_n \subset \mathcal{X}_n$. De plus, les colonnes de toute matrice M de \mathcal{P}_n sont les $E_1, \ldots, E_{n-1}, E_n$ mais dans un ordre différent., donc $\operatorname{Im} M = \operatorname{Vect} \left(e_1, \ldots, e_{n-1}, e_n \right) = \mathbb{R}^n$ et ainsi, M est inversible. On a donc $\mathcal{P}_n \subset GL_n(\mathbb{R})$ et ainsi :

$$\mathcal{P}_n \subset \mathcal{X}_n \cap GL_n(\mathbb{R}) = \mathcal{X}_n^{I}$$

En reprenant la matrice J_n de la question précédente, on a $J_n + E_{1,1} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{X}_n^I$, mais

pas $J_n + E_{1,1} \in \mathcal{P}_n$, donc:

$$\mathcal{P}_n \neq \mathcal{X}_n^{I}$$

On aurait aussi pu prendre plus simplement $I_n + E_{1,2} \dots$

II Maximisation du déterminant sur X_n

Q19. Prouvons par récurrence sur $n \in \mathbb{N}$ que pour tout $n \ge 2$, $|\det M| < n!$ pour tout $M \in \mathcal{X}_n$.

• Pour n = 2, on a vu dans la question **Q15** que pour tout $M \in \mathcal{X}_2$, det $M \in \{-1,0,1\}$. Alors, $|\det M| \le 1 < 2$ et la propriété est vraie au rang n = 2.

• Supposons la propriété vraie à un rang $n \ge 2$.

Soit $M = (a_{i,j}) \in \mathcal{X}_{n+1}$. Pour tout $i \in [1, n+1]$, appelons M_i la matrice $n \times n$ obtenue en supprimant la $i^{\text{ième}}$ ligne et la dernière colonne de M.

Comme les coefficients de M_i sont des coefficients de M, ils appartiennent à [0,1], et donc $M_i \in \mathcal{X}_n$ et donc, par hypothèse de récurrence, $|\det M_i| < n!$

En développant par rapport à la dernière colonne, on a :

$$\left| \det M \right| = \left| \sum_{i=1}^{n+1} (-1)^{i+n+1} a_{i,n+1} \det M_i \right| \le \sum_{i=1}^{n+1} \left| a_{i,n+1} \right| \left| \det M_i \right|.$$

Avec $\left|a_{i,n+1}\right| = a_{i,n+1} \le 1$ et $\left|\det M_i\right| < n!$ pour tout $i \in [1, n+1]$, on obtient :

$$\left| \det M \right| < \sum_{i=1}^{n+1} n! = (n+1) n! = (n+1)!$$

Ainsi, la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \ge 2$, soit :

Pour tout
$$M \in \mathcal{X}_n$$
, $|\det M| < n!$

Q20. On vu dans la question **Q14** que X_n est fini, donc $\{\det M, M \in X_n\}$ est aussi un ensemble fini et ainsi :

Le déterminant possède un maximum sur X_n .

On note $x_n = \max_{M \in \mathcal{X}_n} (\det M)$.

Q21. Soit un entier $n \ge 2$ et une matrice M de X_n telle que det $M = x_n$ (ceci est possible car x_n est un *maximum*).

Considérons la matrice construite par blocs : $M' = \begin{pmatrix} M & 0_{n,1} \\ 0_{1,n} & 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$.

Les coefficients de M' sont soit des coefficients de M, donc égaux à 0 ou 1, soit 0, soit 1.

Ainsi, $M' \in \mathcal{X}_{n+1}$ et donc $\det M' \leq x_{n+1}$.

Or, en développant par rapport à la dernière colonne, on obtient $\det M' = \det M = x_n$ et ainsi $x_n \le x_{n+1}$, ce qui prouve que :

La suite
$$(x_n)_{n\geq 2}$$
 est croissante.

Q22. Toutes les colonnes de J sont égales et non nulles, donc rg(J) = 1. Ainsi, dim ker J = n - 1 et donc 0 est valeur propre de J, de multiplicité au moins n - 1. Ceci veut dire que le polynôme caractéristique de J s'écrit $\chi_J = X^{n-1}(X - \lambda)$. Alors, $tr(J) = (n-1) \times 0 + 1 \times \lambda = \lambda = n$.

Ainsi, $\chi_J = \det(X I_n - J) = X^{n-1}(X - n)$ et donc :

$$\det M = \det (J - I_n) = (-1)^n \det (I_n - J) = (-1)^n \chi_J(1) = (-1)^n (1 - n).$$

Soit:

$$\det M = (-1)^{n-1}(n-1)$$

Les coefficients de M valent 0 (sur la diagonale) ou 1 (ailleurs), donc $M \in \mathcal{X}_n$ et ainsi :

$$\det M = (-1)^{n-1}(n-1) \le x_n.$$

En particulier, pour n impair, $n-1 \le x_n$. Ceci prouve que la suite $(x_n)_{n\ge 2}$ n'est pas majorée et comme elle est croissante :

$$\lim_{n \to +\infty} x_n = +\infty$$

III Matrices de permutations

Q23. Par définition des matrices P_{σ} , l'application de S_n sans P_n qui à $\sigma \in S_n$ associe P_{σ} est une bijection. Or, S_n est fini de cardinal n! donc :

$$\mathcal{P}_n$$
 est fini et son cardinal vaut $n!$

Q24. Soit $M \in \mathcal{M}_n(\mathbb{R})$.

Pour tous
$$i, j \in [[1, n]]$$
, on a $[M^T M]_{i,j} = \sum_{k=1}^n [M]_{k,i} [M]_{k,j}$.

Or, par définition, $M \in O_n(\mathbb{R})$ si et seulement si $M^TM = I_n$, soit $[M^TM]_{i,j} = \delta_{i,j}$ pour tous $i, j \in [1, n]$, autrement dit :

$$M \in O_n(\mathbb{R})$$
 si et seulement si pour tous $i, j \in [1, n], \sum_{k=1}^n [M]_{k,i}[M]_{k,j} = \delta_{i,j}$.

- **Q25.** Procédons par double inclusion.
 - Soit $P_{\sigma} \in \mathcal{P}_n$. Pour tous $i, j \in [1, n], [P_{\sigma}]_{i,j} = \delta_{i,\sigma(j)}$, donc:

$$\sum_{k=1}^{n} [P_{\sigma}]_{k,i} [P_{\sigma}]_{k,j} = \sum_{k=1}^{n} \delta_{k,\sigma(i)} \delta_{k,\sigma(j)} = \delta_{\sigma(i),\sigma(j)}.$$

Or, σ est une bijection, donc est injective et $\sigma(i) = \sigma(j)$ si et seulement si i = j, donc :

$$\sum_{k=1}^{n} [P_{\sigma}]_{k,i} [P_{\sigma}]_{k,j} = \delta_{i,j}.$$

D'après la question précédente, ceci prouve que $P_{\sigma} \in O_n(\mathbb{R})$ et comme $\mathcal{P}_n \subset \mathcal{X}_n$, on a :

$$P_{\sigma} \in \mathcal{X}_n \cap O_n(\mathbb{R})$$
.

Ceci prouve que:

$$\underline{\mathcal{P}_n \subset \mathcal{X}_n \cap O_n(\mathbb{R})}.$$

• Soit $M \in \mathcal{X}_n \cap O_n(\mathbb{R})$.

Comme $M \in \mathcal{X}_n$, $[M]_{k,i}$, $[M]_{k,j} \in \{0,1\}$ donc $[M]_{k,i}$, $[M]_{k,j} \in \{0,1\}$ pour tous $i, j, k \in [1,n]$.

Comme $M \in O_n(\mathbb{R})$, $M^T M = I_n$ donc $\sum_{k=1}^n [M]_{k,i} [M]_{k,j} = \delta_{i,j}$ pour tous $i, j \in [1, n]$.

Soient $i, j \in [1, n]$.

- Si i = j, alors $\sum_{k=1}^{n} [M]_{k,i} [M]_{k,i} = 1$ et il existe un unique $k_i \in [1, n]$ tel que $[M]_{k_i,i}^2 = 1$, soit $[M]_{k_i,i} = 1$ et pour tout $k \in [1, n] \setminus \{k_i\}$, $[M]_{k,i}^2 = 0$, soit $[M]_{k,i} = 0$, soit pour tout $k \in [1, n]$, $[M]_{k,i} = \delta_{k,k_i}$.
- O Si $i \neq j$, alors $\sum_{k=1}^{n} [M]_{k,i} [M]_{k,j} = 0$ et pour tout $k \in [[1, n]], [M]_{k,i} [M]_{k,j} = 0$. En particulier, pour $k = k_i$, on obtient $[M]_{k_i,i} [M]_{k_i,j} = [M]_{k_i,j} = 0$.

On vient donc de prouver que pour tout $i \in [1, n]$, il existe un unique $k_i \in [1, n]$ tel que pour tout $k \in [1, n] \setminus \{k_i\}$, $[M]_{k_i, j} = 0$ et pour tout $j \in [1, n] \setminus \{i\}$, $[M]_{k_i, j} = 0$.

Posons $\sigma: [\![1,n]\!] \to [\![1,n]\!]; i \mapsto k_i$. Soit $i,i' \in [\![1,n]\!]$ tels que $\sigma(i) = \sigma(i')$, c'est-à-dire $k_i = k_{i'}$.

Si $i \neq i'$, alors $i' \in [1, n] \setminus \{i\}$, donc $[M]_{k_i, i'} = 0$. Mais, $[M]_{k_i, i'} = [M]_{k_i, i'} = 1$, ce qui est absurde, donc i = i'.

Ainsi, σ est injective, donc bijective car [1, n] est fini. On vient donc de trouver $\sigma \in S_n$ telle que pour tous $i, k \in [1, n]$, $[M]_{k,i} = \delta_{k,\sigma(i)}$, donc $M = P_{\sigma} \in \mathcal{P}_n$.

Ceci prouve que:

$$X_n \cap O_n(\mathbb{R}) \subset \mathcal{P}_n$$
.

Ainsi, on a bien:

$$\mathcal{P}_n = \mathcal{X}_n \cap O_n(\mathbb{R})$$

Soit $M \in O_n(\mathbb{R})$. On a $M^T M = I_n$, donc:

$$\det(M^{\mathsf{T}}M) = \det M^{\mathsf{T}} \times \det M = (\det M)^2 = \det I_n = 1.$$

Ainsi, $\det M \neq 0$, donc $O_n \subset GL_n(\mathbb{R})$ et comme $\mathcal{P}_n \subset O_n$, on obtient :

$$\mathcal{P}_n \subset GL_n(\mathbb{R})$$

Q26. Pour tout $j \in [1, n]$, $u_{\sigma}(e_j) = \sum_{i=1}^{n} [P_{\sigma}]_{i,j} e_i = \sum_{i=1}^{n} \delta_{i,\sigma(j)} e_i = e_{\sigma(j)}$, donc on a bien:

$$u_{\sigma}(e_j) = e_{\sigma(j)}$$

Q27. Soient σ et σ' deux éléments de S_n . D'après la question précédente, pour tout $j \in [1, n]$:

$$u_{\sigma} \circ u_{\sigma'}(e_j) = u_{\sigma} \left(u_{\sigma'}(e_j) \right) = u_{\sigma}(e_{\sigma'(j)}) = e_{\sigma(\sigma'(j))} = e_{\sigma \circ \sigma'(j)}.$$

Ainsi, $u_{\sigma} \circ u_{\sigma'}$ et $u_{\sigma \circ \sigma'}$ coïncident en tous les vecteurs de la base canonique de \mathbb{R}^n , ce qui permet d'affirmer que $u_{\sigma} \circ u_{\sigma'} = u_{\sigma \circ \sigma'}$, soit :

$$P_{\sigma}P_{\sigma'}=P_{\sigma\circ\sigma'}$$

Q28. Soit $\sigma \in S_n$ donnée. Notons $\Theta : \begin{cases} \mathbb{Z} \to S_n \\ k \mapsto \sigma^k \end{cases}$. On a $\Theta(\mathbb{Z}) \subset S_n$.

Comme \mathbb{Z} est infini, si Θ était injective, $\Theta(\mathbb{Z})$, donc S_n seraient infinis. Ceci est absurde car S_n est fini. Ainsi :

L'application
$$\begin{cases} \mathbb{Z} \to S_n \\ k \mapsto \sigma^k \end{cases}$$
 n'est pas injective.

Comme Θ n'est pas injective, il existe $(n_1, n_2) \in \mathbb{Z}^2$ tel que $n_1 < n_2$ et $\Theta(n_1) = \Theta(n_2)$, soit $\sigma^{n_2} = \sigma^{n_1}$. En posant $N = n_2 - n_1 \in \mathbb{N}^*$, on obtient $\sigma^{n_1} \sigma^N = \sigma^{n_1+N} = \sigma^{n_1}$. Or, σ est bijective, donc σ^{n_1} l'est aussi et on peut écrire $\sigma^N = (\sigma^{n_1})^{-1} \sigma^{n_1} \sigma^N = (\sigma^{n_1})^{-1} \sigma^{n_1} = Id_{\llbracket 1,n \rrbracket}$.

Ainsi:

Il existe
$$N \in \mathbb{N}^*$$
 tel que $\sigma^N = Id_{\llbracket 1,n \rrbracket}$.

Prouvons par récurrence sur k que pour tout $k \in \mathbb{N}^*$, $P_{\sigma^k} = P_{\sigma}^k$.

- Pour k = 1, $P_{\sigma^1} = P_{\sigma} = P_{\sigma}^1$: la propriété est vraie.
- Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$. On a alors :

$$P_{\sigma^{k+1}} = P_{\sigma \circ \sigma^k} = P_{\sigma} P_{\sigma^k}$$
 d'après **Q27**

$$= P_{\sigma} P_{\sigma}^k$$
 par hypothèse de récurrence
$$= P_{\sigma}^{k+1}$$

La propriété est donc vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$.

En particulier, on peut écrire $P_{\sigma}^N = P_{G^N} = P_{Id_{\llbracket I,n \rrbracket}} = I_n$ et donc le polynôme $X^N - 1$ est annulateur de P_{σ} . Or, ce polynôme est scindé à racines simples dans $\mathbb C$ (les N racines $N^{\text{ièmes}}$ de l'unités), donc P_{σ} admet un polynôme annulateur scindé à racines simples, ce qui permet de conclure que P_{σ} est diagonalisable. Ceci est vrai pour tout $\sigma \in S_n$, donc :

Toutes les matrices de $\mathcal{P}_{\scriptscriptstyle n}$ sont diagonalisables sur \mathbb{C} .

Q29. Posons $v = e_1 + e_2 + ... + e_n = (1, 1, ..., 1)$. Pour tout $\sigma \in S_n$, on a:

$$u_{\sigma}(v) = u_{\sigma}\left(\sum_{i=1}^{n} e_{i}\right) = \sum_{i=1}^{n} u_{\sigma}(e_{i}) = \sum_{i=1}^{n} e_{\sigma(i)}.$$

Or, σ est une bijection, donc $\sigma(i)$ décrit [1,n] quand i décrit [1,n] et ainsi :

$$u_{\sigma}(v) = \sum_{i=1}^{n} e_{\sigma(i)} = \sum_{k=1}^{n} e_{k} = v.$$

On vient donc d'établir que v est un vecteur propre commun à toutes les matrices de \mathcal{P}_n .

Tout vecteur non nul de Vect(v) est alors vecteur propre commun à toutes les matrices de \mathcal{P}_n .

Soit maintenant $x = \sum_{i=1}^{n} x_i e_i$ un vecteur propre commun à toutes les matrices de \mathcal{P}_n .

Pour tout $\sigma \in S_n$, il existe $\lambda_{\sigma} \in \mathbb{C}$ tel que $u_{\sigma}(x) = \lambda_{\sigma}x$, soit :

$$\sum_{i=1}^{n} x_{i} u_{\sigma}(e_{i}) = \sum_{i=1}^{n} x_{i} e_{\sigma(i)} = \sum_{k=0}^{n} x_{\sigma^{-1}(k)} e_{k} = \lambda_{\sigma} \sum_{k=1}^{n} x_{k} e_{k} = \sum_{k=1}^{n} \lambda_{\sigma} x_{k} e_{k}.$$

Alors, pour tout $k \in [1, n]$, $x_{\sigma^{-1}(k)} = \lambda_{\sigma} x_k$, ou bien pour tout $i \in [1, n]$, $x_i = \lambda_{\sigma} x_{\sigma(i)}$.

Comme x est un vecteur propre, il n'est pas nul. Il existe donc $\ell \in [1, n]$ tel que $x_{\ell} \neq 0$.

Considérons une permutation σ de $[\![1,n]\!]$ qui laisse ℓ invariant et qui réalise une permutation circulaire des tous les éléments de $[\![1,n]\!]\setminus\{\ell\}$ (chaque élément de l'ensemble $\{1,\ldots,\ell-1,\ell+1,\ldots,n\}$ est transformé en le suivant, n étant transformé en 1, si $\ell\neq n$).

On a alors:

- $x_{\ell} = \lambda_{\sigma} x_{\ell}$, donc $\lambda_{\sigma} = 1$ (car $x_{\ell} \neq 0$);
- pour tout $i \in [1, n] \setminus \{\ell\}$, $x_i = \lambda_{\sigma} x_{\sigma(i)} = x_{\sigma(i)}$, soit $x_i = x_j$ pour tous $i, j \in [1, n] \setminus \{\ell\}$.

Si tous les x_i pour $i \neq \ell$ sont nuls, alors $x = x_\ell e_\ell$ qui n'est pas invariant par n'importe que permutation qui ne laisse pas e_ℓ invariant. C'est absurde, donc tous les x_i pour $i \neq \ell$ sont non nuls et en faisant le raisonnement ci-dessus pour un entier différent du ℓ choisi initialement, on obtient finalement que $x_1 = x_2 = ... = x_n$, soit $x \in Vect(v) \setminus \{0\}$.

Finalement:

Les vecteurs propres communs à toutes les matrices de \mathcal{P}_n sont ceux de $Vect(v)\setminus\{0\}$.

Q30. Rappelons que $v = e_1 + e_2 + ... + e_n$ et, pour $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, on a :

- $x \in D = Vect(v)$ si et seulement si $x_1 = x_2 = ... = x_n$;
- $x \in H = D^{\perp} = (Vect(v))^{\perp}$ si et seulement si $\langle x, v \rangle = \sum_{i=1}^{n} x_i = 0$.
- a) Les deux sous-espaces $\{0\}$ et \mathbb{R}^n sont stables par tout endomorphisme de \mathbb{R}^n , donc par tous les u_{σ} quand σ décrit S_n .

D'après la question précédente, la droite D = Vect(v) est elle aussi stable par tous les u_{σ} quand σ décrit S_n .

Pour tout $\sigma \in S_n$ et pour tout $x = (x_1, x_2, ..., x_n) \in H$:

$$u_{\sigma}(x) = \sum_{i=1}^{n} x_{i} u_{\sigma}(e_{i}) = \sum_{i=1}^{n} x_{i} e_{\sigma(i)} = \sum_{k=0}^{n} x_{\sigma^{-1}(k)} e_{k}.$$

Donc, $\langle u_{\sigma}(x), v \rangle = \sum_{k=1}^{n} x_{\sigma^{-1}(k)} = \sum_{i=1}^{n} x_{i} = 0$ et ainsi, $u_{\sigma}(x) \in H$. Ceci prouve que H est stable par tous les u_{σ} quand σ décrit S_{n} .

Ainsi:

$$\{0\}$$
, \mathbb{R}^n , D et H sont bien stables par u_{σ} pour tout $\sigma \in S_n$.

b) Comme V n'est pas inclus dans D, il existe $i, j \in [\![1,n]\!]$ et $x = (x_1, x_2, \ldots, x_n) \in V$ tels que i < j et $x_i \neq x_j$. Notons alors $\tau_{i,j}$ la permutation de $[\![1,n]\!]$ qui échange i et j, et laisse invariant tous les autres éléments de $[\![1,n]\!]$.

On a $u_{\tau_{i,j}}(x) = (x_1, \dots, x_j, \dots, x_i, \dots, x_n) \in V$, et comme V est un sous-espace vectoriel de \mathbb{R}^n , on a $u_{\tau_{i,j}}(x) - x \in V$, et comme $x_j - x_i \neq 0$:

$$\frac{1}{x_i - x_i} \Big(u_{\tau_{i,j}}(x) - x \Big) = \frac{1}{x_i - x_i} \Big(0, \dots, x_j - x_i, \dots, x_i - x_j, \dots, 0 \Big) = e_i - e_j \in V.$$

Ainsi:

Il existe un couple
$$(i, j) \in [[1, n]]^2$$
 avec $i \neq j$ tel que $e_i - e_j \in V$.

Si, pour $k \in [1,n] \setminus \{i\}$ on note $\tau_{i,k}$ la permutation de [1,n] qui échange i et k, et laisse invariant tous les autres éléments de [1,n], on a avec $e_i - e_j \in V$:

$$u_{\tau_{i,k}}(e_i - e_j) = u_{\tau_{i,k}}(e_i) - u_{\tau_{i,k}}(e_j) = e_{\tau_{i,k}(i)} - e_{\tau_{i,k}(j)} = e_k - e_j \in V$$

Ainsi:

Pour tout
$$k \in [1, n]$$
, $e_k - e_j \in V$.

Remarquons pour tout $k \in \llbracket 1, n \rrbracket$, $e_k - e_j \in H$ (la somme des coordonnées de $e_k - e_j$ est nulle). Or, la famille $\left(e_k - e_j\right)_{k \in \llbracket 1, n \rrbracket \setminus \{j\}}$ est libre (car $\left(e_1, e_2, \dots, e_n\right)$ l'est) et contient $n-1 = \dim H$ vecteurs : c'est donc une base de H et ainsi, $H = Vect\left(\left(e_k - e_j\right)_{k \in \llbracket 1, n \rrbracket \setminus \{j\}}\right)$.

En reprenant les notations de la question précédentes, on a $e_k - e_j \in V$ pour tout $k \in [1,n] \setminus \{j\}$, donc $H = Vect\left(\left(e_k - e_j\right)_{k \in [1,n] \setminus \{j\}}\right) \subset V$.

Ainsi, si la sous-espace V n'est pas contenu dans la droite D, autrement dit, V est différent de $\{0\}$ et D, alors l'hyperplan H est inclus dans V, autrement dit, V est égal à H ou \mathbb{R}^n (les seuls sous-espaces de \mathbb{R}^n contenant H). Ceci permet de conclure que V est égal à $\{0\}$, \mathbb{R}^n , D ou H. Finalement :

Les seuls sous-espaces de \mathbb{R}^n stables par u_{σ} pour tout σ de S_n sont $\{0\}$, \mathbb{R}^n , D et H.

Q31. Appelons \mathscr{E} l'ensemble formé par tous les coefficients de toutes les puissances successives de M Par hypothèse, \mathscr{E} est fini et pour tout $k \in \mathbb{N}$, $M^k \in \mathcal{M}_n(\mathscr{E})$. Or, comme \mathscr{E} est fini, $\mathcal{M}_n(\mathscr{E})$ l'est aussi. L'ensemble $\{M^k, k \in \mathbb{N}\}$ est donc une partie d'un ensemble fini : il es fini. Ceci implique que les M^k ne sont pas tous distincts deux à deux, donc qu'il existe $k_1, k_2 \in \mathbb{N}$ tels que $k_1 < k_2$ et $M^{k_1} = M^{k_2} = M^{k_1+N} = M^{k_1}M^N$ avec $N = k_2 - k_1 \in \mathbb{N}^*$.

Comme M est inversible, M^{k_1+1} l'est aussi et, en multipliant la relation ci-dessus par $(M^{k_1+1})^{-1}$, on obtient :

$$M^{-1} = (M^{k_1+1})^{-1}M^{k_1} = (M^{k_1+1})^{-1}M^{k_1}M^{N} = M^{N-1}$$

Prouvons par récurrence sur k que pour tout $k \in \mathbb{N}$, $M^k \in \mathcal{M}_n(\mathbb{N})$ (les coefficients de M^k sont des entiers naturels).

- Pour k = 0, $M^0 = I_n \in \mathcal{M}_n(\mathbb{N})$: la propriété est vraie.
- Supposons la propriété vraie à un rang $k \in \mathbb{N}$.

Avec
$$M^{k+1} = M^k M$$
, on a pour tous $i, j \in [1, n]$, $[M^{k+1}]_{i,j} = \sum_{\ell=1}^n [M^k]_{i,\ell} [M]_{\ell,j}$.

Pour tout $\ell \in [\![1,n]\!]$, on a $[M]_{\ell,j} \in \mathbb{N}$ par hypothèse et $[M^k]_{\ell,j} \in \mathbb{N}$ par hypothèse de récurrence. Or, \mathbb{N} est stable par produit et par somme, donc $[M^{k+1}]_{i,j} \in \mathbb{N}$.

Ainsi, la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}$.

Comme $N \in \mathbb{N}^*$, on a $N-1 \in \mathbb{N}$ et donc, $M^{-1} = M^{N-1} \in \mathcal{M}_n(\mathbb{N})$, autrement dit :

$$M^{-1}$$
 est à coefficients dans $\mathbb N$.

On a
$$M^{-1}M = I_n$$
, donc $\sum_{k=1}^n [M^{-1}]_{i,k} [M]_{k,j} = \delta_{i,j}$ pour tous $i, j \in [[1, n]]$.

Comme les $[M^{-1}]_{i,k}$ et $[M]_{k,j}$ sont tous des entiers naturels, on prouve comme dans la question **Q25** que chaque colonne et chaque ligne de M contient exactement un coefficient égal à 1 et n-1 coefficients nuls, autrement dit que :

M est une matrice de permutation.

IV Une famille d'éléments de X_n

Q32. On a pour tous $i, j \in [1, n]$, $[M]_{i,j} = [UU^{\mathsf{T}}]_{i,j} = x_i x_j$ et comme x_i et x_j appartiennent à $\{0, 1\}$ qui est stable par produit, on a aussi $x_i x_j \in \{0, 1\}$. Ceci prouve que :

$$M \in \mathcal{X}_n$$

Pour tout $i \in [1, n]$, $[M]_{i,i} = x_i^2 = x_i$. Donc, $tr(M) = x_1 + x_2 + ... + x_n = s$.

Pour tout $i \in [1, n]$, $x_i \in \{0, 1\}$, ce qui implique que $0 \le x_i \le 1$, et les x_i ne sont pas tous nuls, donc $s \in \mathbb{N}^*$ et $0 \le s \le n$. Ainsi:

$$tr(M) \in [1, n]$$

On a vu que pour tout $i \in [1, n]$, $[M]_{i,i} = x_i$. Or, les x_i ne sont pas tous nuls, donc $M \neq 0_n$ et ainsi, $rg(M) \geq 1$.

De plus, si on note $C_1, C_2, ..., C_n$, on a $C_j = x_j U$ pour tout $j \in [1, n]$, donc $\text{Im} M \subset Vect(U)$ et ainsi $rg(M) \le 1$.

Finalement:

$$rg(M)=1$$

Q33. Pour tous $i, j \in [1, n]$, on a $[M]_{j,i} = x_j x_i = x_i x_j = [M]_{i,j} \in \mathbb{R}$, donc, M est symétrique réelle et d'après le théorème spectral :

M est diagonalisable.

On a vu que rg(M) = 1, donc d'après le théorème du rang, $\dim(\ker M) = n - 1$ donc 0 est valeur propre de M de multiplicité au moins n - 1.

Ceci implique que $\chi_M = X^{n-1}(X - \lambda)$ et $tr(M) = \lambda = s$. Comme $s \neq 0$, on obtient :

$$Sp(M) = \{0, s\}$$

Soit
$$Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$
 non nul.

• $MZ = 0_{n,1}$ si et seulement si pour tout $i \in [1, n]$, $\sum_{j=1}^{n} x_i x_j z_j = 0$, soit $x_i \left(\sum_{j=1}^{n} x_j z_j\right) = 0$ et comme l'un au moins des x_i n'est pas nul, ceci équivaut à $\sum_{j=1}^{n} x_j z_j = 0$. Ainsi :

ker
$$M$$
 est l'hyperplan d'équation cartésienne $\sum_{j=1}^{n} x_j z_j = 0$.

• Si MZ = sZ, on a (avec $s \neq 0$) $Z = \frac{1}{s}MZ \in \text{Im } M = Vect(U)$, donc $\ker(M - sI_n)$ est inclus dans la droite Vect(U) et comme $\ker(M - sI_n)$ n'est pas réduit à 0:

$$\ker(M - sI_n) = Vect(U)$$

Q34. On a
$$M^2 = UU^TUU^T = U(U^TU)U^T$$
 et $U^TU = \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i = s$, donc $M^2 = sUU^T = sM$.
Alors, $M^3 = MM^2 = sM^2 = s^2M$, $M^4 = MM^3 = s^2M^2 = s^3M$, ...

On conjecture que pour tout $k \in \mathbb{N}^*$, $M^k = s^{k-1}M$. Prouvons-le par récurrence sur k.

- Pour k = 1, $M^1 = M = s^0 M$: la propriété est vraie.
- Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$.

Alors, par hypothèse de récurrence, $M^k = s^{k-1}M$ donc :

$$M^{k+1} = M^k M = (s^{k-1}M)M = s^{k-1}M^2 = s^{k-1}(sM) = s^k M$$
.

La propriété est donc vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$, soit :

$$M^{k} = s^{k-1}M$$

Q35. La matrice M est une matrice de projection si et seulement si $M^2 = M$. Or, $M^2 = sM$ et M est non nulle, donc :

M est une matrice de projection si et seulement si s = 1.

Q36. Pour tout $k \in \mathbb{N}^*$, $M^k = s^{k-1}M$, donc, la suite $(M^k)_{k \in \mathbb{N}^*}$ converge si et seulement si la suite $(s^{k-1}M)_{k \in \mathbb{N}^*}$ converge, autrement dit, si et seulement si la suite géométrique $(s^{k-1})_{k \in \mathbb{N}^*}$ converge. Or, on a vu dans la question **Q32** que $s = tr(M) \in [1, n]$, donc la suite $(s^{k-1})_{k \in \mathbb{N}^*}$ ne converge que pour s = 1.

Dans ce cas, la suite $(M^k)_{k \in \mathbb{N}^*}$ est constante, avec $M^k = M$ pour tout $k \in \mathbb{N}^*$, donc converge vers M et d'après la question précédente, quand s = 1, M est une matrice de projection.

Ainsi:

La suite des M^k est convergente si et seulement si $x_1 + x_2 + ... + x_n = 1$ et dans ce cas, la limite est une matrice de projection.

Q37. On cherche $F = Vect(M = UU^{\mathsf{T}}, U = (x_1 \ x_2 \ ... \ x_n)^{\mathsf{T}} \in \mathcal{M}_{n,1}(\{0,1\}))$.

On a vu que tout matrice de la forme $M = UU^{T}$ est symétrique, donc toute combinaison linéaire de matrice de cette forme est encore symétrique. Ainsi :

$$F \subset S_n(\mathbb{R})$$
.

Rappelons que si on note $\left(E_{i,j}\right)_{i,j\in \llbracket 1,n\rrbracket}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$, on a :

$$S_n(\mathbb{R}) = Vect\left(\left(E_{i,i}\right)_{1 \le i \le n} \bigcup \left(E_{i,j} + E_{j,i}\right)_{1 \le i < j \le n}\right).$$

Donc, $S_n(\mathbb{R}) \subset F$ si et seulement si $E_{i,i} \in F$ pour tout $i \in [1,n]$ et $E_{i,j} + E_{j,i} \in F$ pour tous $i, j \in [1,n]$ tels que i < j.

Pour tout $i \in [1, n]$, posons $U_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i^{\text{ème}}$ ligne.

• Pour $i \in [1, n]$, on a $U_i \in \mathcal{M}_{n,1}(\{0,1\})$ et:

$$E_{i,i} = U_i U_i^{\mathsf{T}} \in F$$
.

• Pour $i, j \in [1, n]$ tels que i < j, on a $U_i, U_j, U_i + U_j \in \mathcal{M}_{n,1}(\{0,1\})$ et:

$$E_{i,j} + E_{j,i} = (U_i + U_j)(U_i + U_j)^{\mathsf{T}} - U_i U_i^{\mathsf{T}} - U_j U_j^{\mathsf{T}} \in F.$$

Ainsi, $E_{i,i} \in F$ pour tout $i \in [\![1,n]\!]$ et $E_{i,j} + E_{j,i} \in F$ pour tous $i,j \in [\![1,n]\!]$ tels que i < j, donc $S_n(\mathbb{R}) \subset F$ et finalement :

$$F = Vect\left(M = UU^{\mathsf{T}}, U = \left(x_1 \ x_2 \ \dots \ x_n\right)^{\mathsf{T}} \in \mathcal{M}_{n,1}\left(\left\{0,1\right\}\right)\right) = S_n(\mathbb{R})$$