PSI* novembre 2025

DM de Mathématiques n° 4

Soient $(a_n)_{n\in\mathbb{N}^*}$ une suite de nombres de $\{0,1\}$ (donc pour tout $n\in\mathbb{N}^*$, $a_n=0$ ou 1) et $\lambda\in\mathbb{R}_+^*$. Pour tout entier $n\geq 3$, on pose :

$$A = \begin{pmatrix} a_{1} & 0 & \cdots & 0 & a_{n+1} \\ 0 & \lambda a_{2} & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots \lambda a_{n-1} & 0 \\ a_{n+2} & 0 & \cdots & 0 & a_{n} \end{pmatrix}.$$

1) Prouver que A est semblable à la matrice $F = \left(\frac{E}{0_{n-2,2}} \begin{vmatrix} 0_{2,n-2} \\ \lambda D \end{vmatrix}\right)$ avec $E = \left(\begin{matrix} a_1 & a_{n+1} \\ a_{n+2} & a_n \end{matrix}\right) \in \mathcal{M}_2\left(\left\{0,1\right\}\right)$ et $D = Diag\left(a_2, \dots, a_{n-1}\right) \in \mathcal{M}_{n-2}\left(\left\{0,1\right\}\right)$.

On donnera une matrice $P \in GL_n(\mathbb{R})$, ainsi que P^{-1} , telle que $A = PFP^{-1}$.

- 2) On cherche à calculer les puissances de E.
 - a. Calculer $\begin{pmatrix} 0 & a_{n+1} \\ a_{n+2} & 0 \end{pmatrix}^k$ pur tout $k \in \mathbb{N}^*$.
 - © On pourra distinguer les deux cas : $a_{n+1} = a_{n+2}$ et $a_{n+1} \neq a_{n+2}$.
 - b. Calculer E^k pour tout $k \in \mathbb{N}^*$, quand $a_1 = a_n$.
 - c. On suppose que $a_1 \neq a_n$ et $a_{n+1}a_{n+2} = 0$. Montrer qu'il existe une matrice $Q \in GL_2(\mathbb{R})$ et deux réels α et β tels que $E = Q \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} Q^{-1}$ (on donnera Q et Q^{-1}).

Calculer alors E^k pour tout $k \in \mathbb{N}^*$.

- d. On suppose que $a_1 \neq a_n$ et $a_{n+1}a_{n+2} \neq 0$.
 - i. Justifier que $E = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ ou $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
 - ii. Pour $E = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, prouver qu'il existe une suite $(u_k)_{k \in \mathbb{N}}$ telle que pour tout $k \in \mathbb{N}$:

$$E^{k} = \begin{pmatrix} u_{k+2} & u_{k+1} \\ u_{k+1} & u_{k} \end{pmatrix} \text{ et } u_{k+2} = u_{k+1} + u_{k}.$$

On exprimera u_k en fonction de k.

iii. Montrer que $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ sont semblables et donner une matrice R, ainsi que son inverse, telle que $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = R \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} R^{-1}$. En déduire les puissances de $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

.../...

PSI* novembre 2025

3) Convient y a-t-il de matrices *E* possibles. Montrer que l'on a balayé toutes les possibilités dans la question 2.

4) Déterminer une condition nécessaire et suffisante sur le réel λ et les matrices E et D pour que la série de matrices $\sum_{k>1} \frac{1}{k(k+1)} A^k$ converge. Calculer la somme en cas de convergence.

On considère maintenant une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$ sur un univers probabilisé (Ω,P) , mutuellement indépendantes et suivant toutes une même loi de Bernoulli de paramètre $p\in]0,1[$ (donc pour tout $n\in\mathbb{N}^*$, $X_n(\Omega)=\{0,1\}$ et $P(X_n=1)=p$) et pour un entier $n\geq 3$, on appelle M la matrice aléatoire :

$$M = \begin{pmatrix} X_{1} & 0 & \cdots & 0 & X_{n+1} \\ 0 & \lambda X_{2} & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots \lambda X_{n-1} & 0 \\ X_{n+2} & 0 & \cdots & 0 & X_{n} \end{pmatrix}.$$

On introduit aussi $U = \begin{pmatrix} X_1 & X_{n+1} \\ X_{n+2} & X_n \end{pmatrix}$, $V = Diag(X_2, \dots, X_{n-1})$ et $S = \sum_{k=1}^{+\infty} \frac{1}{k(k+1)} M^k$ quand la série de matrices $\sum_{k \geq 1} \frac{1}{k(k+1)} M^k$ converge.

On a admet que M, U, V et S sont des variables aléatoires à valeurs dans $\mathcal{M}_n(\{0,1\})$, $\mathcal{M}_2(\{0,1\})$, $\mathcal{M}_{n-2}(\{0,1\})$ et $\mathcal{M}_n(\mathbb{R})$ respectivement.

- 5) Déterminer, suivant la valeur de λ , la probabilité $f(\lambda)$ que la série $\sum_{k\geq 1} \frac{1}{k(k+1)} M^k$ converge.
- 6) On suppose que $\lambda \in [0,1]$.
 - a. A l'aide des résultats de la question 4, calculer la probabilité que la série $\sum_{k\geq 1} \frac{1}{k(k+1)} M^k$ converge et que sa somme soit inversible.
 - b. Prouver, sans utiliser les valeurs de *S* trouvées dans la question 4, que les deux évènements « *S* est inversible » et « *U* et *V* sont inversibles » sont égaux.
 - c. Quand la série $\sum_{k>1} \frac{1}{k(k+1)} M^k$ converge, calculer la probabilité que S soit inversible.