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Exercice 1 

Soit la fonction 
0

:
xt

e
f x dt

x t

−
+ ∞

+
֏ . 

1) Déterminer l’ensemble de définition D de f, puis montrer que f est de classe C ∞  sur D. 

2) Déterminer l’équivalent le plus simple de f en 0 et en + ∞. 

 Pour l’équivalent en 0, on pourra effectuant le changement de variable u xt= , puis montrer 

que 
21

u
e

x du
x u

−
+ ∞

+
֏  est bornée au voisinage de 0 et utiliser la convexité de la fonction 

exponentielle pour encadrer 
1

20

u
e
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−

+
 . 

 Pour l’équivalent en + ∞, on pourra effectuer une intégration par parties (proprement !). 

3) Dresser le tableau de variation complet de f sur D. 

4) Déterminer une équation différentielle (E) dont f est solution sur D. 

5) Résoudre (E) et en déduire que pour tout réel 0x > , on a : 
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0
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Exercice 2 

Soit la fonction 
2

0

( 1)
:

( )

n

n

f x
x n

+ ∞

=

−

+
֏ . 

1) Montrer que f est définie, continue et positive sur *

+
ℝ . 

2) Prouver que pour tout *
x

+
∈ℝ , 

2

1
( ) ( 1)f x f x

x
+ + = . 

3) Déterminer un équivalent simple de f en 0+ . 

4) Prouver que f est intégrable en + ∞. 

Pour tout *
x

+
∈ℝ , on pose ( ) ( )

x
F x f t dt

+ ∞

=  . 

5) Etablir que pour tout *
x

+
∈ℝ , 

0

( 1)
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6) Prouver que pour tout *
x

+
∈ℝ , 

1
( ) ( 1)F x F x

x
+ + = . 

7) Dresser le tableau de variation complet de F sur *

+
ℝ . 

8) Justifier que pour tout ] [1,x ∈ + ∞ , ( 1) ( ) 2 ( ) ( ) ( 1)F x F x F x F x F x+ + ≤ ≤ + − . En déduire un 

équivalent simple de F en + ∞ . 
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9) La fonction 
1

( )
2

x F x
x

−֏  est-elle intégrable en 0 ? En + ∞  ? 

10) Prouver que pour tout *p ∈ℕ  : 
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 On pourra établir que pour tout 
*

N ∈ℕ , on a 
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  , puis montrer que pour tout 

*
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En déduire la valeur de 
1

1
( )

2
F t dt

t

+ ∞  
− 

 
 . 


