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Corrigé du DS n° 5

A. Fonctions Let P

1. Le rayon de convergence de la série entiere Z 7" est 1. Donc, la série Z 7" converge pour tout z€ D.
n

Or, pour tout complexe z, on a S o (7"),donc:

n n—>+oo

n

Z
Z— pour tout ze D.
n

+o0 +oo
< n— n 1 s .z I .
Lorsque ze€ |—1,1] (donc z est réel), on a Z "= Z z =1 et en intégrant terme A terme, on obtient,

n=1 n=0

pour tout ze |-1,1] :

Y =—In(-2)
n=1 N

2. Soit ze D.

n n
‘o s 2 4 . L. P B
La série entiere E —t" = E (12) (de variable 7) a un rayon de convergence R supérieure ou égal a |— si
n n Z

z#0 et infini si z=0, donc R >1. Alors, qD:tHL(tz)zz(tZ)

n=l1

est définie et dérivable sur [0,1] , de

+o0

dérivée t > 2z”t"_l . Et, pour tout t€ [0,1] ,onatze D et:

n=1
+oo +oo +oo
Zzntn—l — ZZ(ZI)VI—I — ZZ(ZI)n :L
n=l1 n=l1 n=0 1_ Zt

Ainsi :
La fonction ®: ¢+ L(tz) = Z (2) est dérivable sur [0,1] , de dérivée @':t > " i .
=1 N -zt
3. La fonction y:t+> (1—zt)e"™ =(1-zt)e®™ est dérivable sur [0,1] en tant que produit de telles

fonctions, de dérivée :
. , Z
Wit (1-2t)@'(1) e —ze™ =(1- Zt)l—e‘”") _ e =Q.
—zt
Donc :

La fonction y:7 > (1—zz)e"™ est constante sur [0,1].

On a alors Y(1) = y(0), soit (1—z)e"? =e"” =¢” =1 et donc :

eL(z) —

1
1-z
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4. Soit ze D.Ona |z| <1, donc la série géométrique Z:|z|'Z converge et :

O RS EDIES
n=1 n=1 1
D’apres la question 1, on a z| | (1—|z|) et ainsi, pour tout ze D :

n=1 N

IL(z)|<-In(1-]2])

Pour tout ze D ettout ne N ,ona z"€ D, donc :

s-m@—

2'[)==1n(1-[]").

Or, comme |z|<1, on a |z| ——— 0, donc —ln( —|z| ) g |z|" et la série Z|z|n converge, donc la
n—+oo

n—+oo

série 2— In (1 —|z|n) converge et par comparaison, la série Z‘L(z" )‘ converge.

Ainsi, la série Z L(z") est absolument convergente, donc pour tout ze D :

La série ZL(z") converge.

S. Sipour tout ze D, P(z)= exp(z L(z”)j, on a P(z)#0 car une exponentielle, méme complexe, n’est

n=l1

jamais nulle, et par continuité de 1’exponentielle et la question 3 :

P(z)—exp( hm ZL(Z )j— hm exp(ZL(z )j— hm (HeL(Z >J:Nlir£1m(ﬁ 1 J

n=l1

Ainsi, pour tout ze D :

N >+ nll Z

P(z)#0 et P(z)= hm (ﬁ 1 j

N N
Soit re R, .Onaalors e '€ ]0,1[c D et P(e")= Jim (H%ijhm (H l_mj.
n=l +— e n

Nt (e")" gl-e

" 1_m >0 etainsi, In(1—e ™) et In P(e”") sont définis.
—e

Pour tout ne N, ¢ <1, donc

Par continuité de la fonction In, on peut alors écrire :

lnP(e"):ln{ lim (ﬂﬁﬂz lim (ln[ﬂl l_mD lim ( Zln(l e ™) J
N >+ nel 1— e N >+ —e N >+

n=1

Soit, pour tout € R,

InP(e")==>In(l-¢")
n=1
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B. Développement asymptotique en variable réelle
Pour tout xe R, on pose g(x)=x—| x| —% .
6. La fonction g est définie sur R.

1 .
e Pourtout ne Z et tout xe [n,n+1[, on a q(x)zx—n—z, donc ¢ est affine sur [n,n+1[ : elle est

continue sur [n,n+1 [ et admet des limites finiesen n* et (n+1)".

Alors, g est affine par morceaux, donc continue par morceaux sur tout segment [a,b] de R avec

(a, LaJ +1, LaJ +1,..., LbJ,b) une subdivision adaptée. Ainsi :

g est continue par morceaux sur R .

¢ Ona xe R sietseulementsi x+1€ R et, pour tout xe R :
q(x+1):x+1—|_x+lj—%=x+1—(|_xJ+1)—%=x+1—|_xJ—1—%:x—|_x_|—%:q(x).

Donc :

q est 1-périodique sur R.

e Pourtout xe R, —xe R et:
o sixeZ,ona Lxsz et L—xJ:—x,donc |q(—x)|=|q(x)|=% ;
o sixgZ,ona |_xJ<x<|_xJ+1,d0nc —|_x_|—1<—x<—|_xJ et |_—xJ=—|_xJ—l,donc:

o= ol = x| -2 o[ (-2 -l

1
—X+|_)CJ+E

1
_ 1—-—|=
x+|_xJ+ 2‘

Ainsi :

|q| est paire.

Pour mémoire, voici la courbe de g :

Sl S LSS S
SN

7. Soit te R,
q(u)

” est continue par morceaux sur [1 ) [ en tant que quotient de telles fonctions.
e —

La fonction u —> ——=—
1 1 .
De plus, pour tout u€ [1,+oo[,0ona |u|<u<|u|+1, donc _5< q(u) <§, soit :

1
|CI(M)| <§-
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Avec ¢" —1>0, on obtient :

g | _1
e —1 "2 e”‘ 1

1 _ +oo +o du
Or, ~ e "et I e "du converge, donc I
1 1

™ ™ converge.
el —]u—-+e e

= q(u)

N du converge et donc :

N
Par comparaison, on en déduit que j
1

tu
e —

————du est bien définie pour tout réel > 0.

L’intégrale L q(u)
e"

q(u)
u
pour tout ne N tel que n>1 (donc n=2),ona n—12>1 et:

J 4= [ =l Jau= j;’(l-ijdu_ jrleda,
[u——lnu} ZJ’“IL” du=1- lnn zjk“k

:n—l—%lnn—i[klnu]i*‘:1—%1nn—"2[k1n(k+1)—k1nk]
k=1 k=1

8. La fonction u —

est continue par morceaux sur [1,+ oo [ en tant que quotient de telles fonctions et

n—1
=n—l—%lnn—Z[(k+1)1n(k+1)—k1nk—1n(k+l)]

k=1

n=l1 n—1
:n—l—%lnn—Z[(k+1)1n(k+1)—klnk]+21n(k+1)

k=1 k=1

=1—%lnn—nlnn+21nk

k=2

Et D Ink=In(2x...xn)=In(n!), donc pour tout n€ N tel que n>1 :

k=2

n”\/;

n le"
L Ma’u:ln(n!)—%lnn—nlnn+n—1:ln( e j—l
u

9. Pour tout xe€[1,+[,ona [LxJ,x] c [1,+ o[ et u> q) est continue par morceaux sur [LxJ,x].
u
On a vu que pour tout u € [1,+ o, (u)| , donc |4 <L et
| u 2u
CI(“) CI(M) } 1 X
—Zm| 2.

jm u ‘ Im u Im 2u { L 2 n[m]

Or, 0<[x|<x<|x]|+1, donc 1<—<1+— et quand x —>+oo, ona | x|—+c donc —%0 et le

EIRN Y

théoreme des gendarmes permet de conclure que lim —

g

[x]
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X—>+ 00

Par continuité de In en 1, on obtient lim lln(L JJ 0 et par comparaison :
X

X—>+oo0

lim .[XJMdu =0
] u

La formule de Stirling permet d’écrire :

n
nle" n

~ Znn( j 2T .
n'\p note n"n

Toujours grace a la continuité de la fonction In, on peut conclure avec la question 8 que :

m [ q(”)du_ln(ﬁ)q:ln(;”)—l.

lim jlmq(“)du: lim LLXJ—(](M)du

X +oo u [x]|—>+e0 u n—>+oo

Avec lim ——~du =0, on obtient :

X =+

J‘ q(u)

X—)+(x: X —>+o0

i |2 i Uuq@o oy j 2w o hen
! 2 2

Ainsi :

du converge et vaut

rwq( w) In(2m)
1.

(e

n

=—In(l-¢").

10. Pourtout re R, ,ona e '€ ]0 1[ D’apres la question 1, on a alors Z

n=1

—nt

* * 1
Posons pour tout € R, ettout ne N, f (t)=—e
n

e Pourtout ne N', f, est continue par morceaux et intégrable sur R’ (car ¢+ e’ I'est), avec :

(Vo= oa=1 et Lee] <L

ni_ n o N
e La série z f, converge simplement vers une fonction t+>—In(l—e'), qui est continue par

morceaux sur R’ .

+ o0
e [.asérie ZIO

Alors, > —1In(l—e™") est intégrable sur Ri et:

[T a5

1
= z? converge.

—-
n=1 1

Avec Z— =—, on obtient bien :
n=l1 n

2

+ oo _t __TC_
jo In(l—e")dt = -
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- X

11. Soit g:x— . La fonction g est définie et dérivable sur R’ en tant que quotient de telles

x
fonctions avec pour tout xe R, :
e —l+e" (x—e'+De™”

. X
x =
§') x? X2

Or, par convexité de la fonction exponentielle, on a 1+ x<¢e* pour tout x€ R, donc g'(x) <0 pour tout

xe R et ainsi, g est décroissante sur R, . De plus

—1u

Soit f:(t,u)— ln( j, définie sur Rix] 0,1].

Pour tout (t,u)e R’ x]0,1],ona e™ <1 et 1-tu<e ™ (toujours par convexité de I’exponentielle).

l—e™ . . . . \
Alors, 0<—%— <u <1 et ainsi, fest bien définie et est négative sur R}, x]0,1].
* Pourtout u€ |0,1], f(t,u)——=—Inu (car 1-e™* ~ x).

x—0"

e Pourtout € Ri, les fonctions u > f(¢,u) et u — Inu sont continues par morceaux sur ]0,1] .

—tu —t

. ) 1—
e Pour tout (f,u)e R, ><] O,l], ona tu<t,donc g(tu)= g(t), ce qui donne > ¢ u,dou:
t t

1—e’

|f(t,u)|=—f(t,u)£—ln( ujz—ln(g(t))—lnu.

Comme —In g est croissante sur Ri , donc sur ]O,l] , on a alors pour tout (t,u)e ]O,l]x] 0,1] :
|f(t,w)|<-=1n(g())—Inu.
Et la fonction u > —1In(g(1))—Inu est continue par morceaux et intégrable sur ]0,1].

Alors, d’apres le théoreme de convergence dominée a parametre continu, pour tout f € ]0,1], ut> f(t,u)

est intégrable sur ]0,1] etona:

lim lln(l_e jduz llim{ln(l_e ﬂdu:.[llnustZ[ulnu—u]l:—1.
0 0

t—0"9J0 t 0r—o0* t

Finalement, on a bien :

12. Soit ke N". On a pour tout te R, :

J-(M)/z £q(u) du quand >0
k2o o™ d
u () =

J-(M)/ZMdu quand =0

k/2 u
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Posons J :{g,%} et pour tout (f,u)e R, xXJ :

tg_(u) quand >0
h(t,u) =
9t quand 7=0
u

e Pourtout re R,, ut> h(t,u) est continue par morceaux sur J.

e Pour tout ue J, t+> h(t,u) est continue sur R, (sur R, comme quotient de fonctions continues et

i 1900 000 g0 g
-0t ™ —1 u z—>()*em—1 u h—>()*eh—1 u

donc t+> h(t,u) est continue en 0).

e Par convexité de la fonction exponentielle, on a 1+zu < e™ pour tout (f,u) e R,xJ.
1 ) )
Avec |q(u)| < 5 établi dans la question 7, on a pour tout (t,u)e R, X J :

tlg@w)] _

[nce )|_ W Ty

Et la fonction u —> 2i est continue par morceaux et intégrable sur J = [I; k ; 1} (car k>0).
u

Alors, pour tout te R_, u > h(t,u)est intégrable sur J (ce qui était clair car la fonction est continue par

+ 9

(k+1)/2 . . s
morceaux sur le segment J et 7 > I o h(t,u)du est continue sur R, . Or, cette fonction n’est autre que la

fonction u, , donc, pour tout ke N’

u, est continue sur R, .

13. Soit r€ R, fixé dans cette question.

Pour tout ke N* et tout ue [%,%{ :

o sik=2p estpair,pSu<p+%,d0ncLuJ:p—§et(](u) u_k;‘1<0

® si k=2p+1 estimpair, p+%£u<p+l,d0nc |_uJ=p=% et q(u)zu—gzo.

k k+1
Ainsi, pour tout ue | —,——| :
27 2
@ —|g(w)| quand k est pair
u)=
|q(u)| quand k est impair
Alors, on peut écrire :
+h/2 1
e |q(u)| du quand k est pair
k/2 e”" _1
U, (t) =

J-(k+1)/2 t|q(u)|

du quand k est impair
k/2 eTLl
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k k+1

(k+1)/2 t|q(u)|
Et comme pour tout ue > | on a _—

>0, donc .[m T
M —

— du >0, on obtient dans les deux
e

cas :

|uk (t)| _ j (k+1)/2 t|q(u)| i

ki2 e —1

] ) ) - |uk (t)| quand k est pair ) .
On vient aussi de voir que u, (t) = , soit pour tout ke N :

|uk (t)| quand k est impair

u, (1) = (=D |u, (1)

Pour tout k€ N, en effectuant le changement de variable v=k+1—-u,ona:

<k+2)/2t|q(u)| = .[k/Z t|q(k+1 v)| I(k+1)/2t|q(k+1 v)| v

2 iktl=n) g

|uk+1 (t)| :.[

(kD2 o™ _1 (k42 !UH=Y) _q

Et d’apres la question 6, la fonction |q| est paire et 1-périodique, donc |q(k+1—v)| :|q(— v)| = |q(v)| et en

renommant « la variable muette dans 1’intégrale, on a :

|uk+1 (t)| = j (M)/ZMdu .

k2 ke g
Or, pour tout u e [%,%}, ona (k+1—u)—u=2(%—uj20, donc k+1—u=>u etavec t >0 :

tlgw)] _ tlq@)]

o/ 1 7

e -1
Alors :

&k+nr2 t|q(u) k+ni2t|q(u)
|uk+1 (t)| - jk/; ﬁ du < jk/z e|’” - 1|

=|u, ().

Ainsi, la suite (|uk (t)|)keN* est décroissante.

. R 1 . t
De plus, pour tout ke N et pour tous f,uc R,, ona |q(u)| SE (vu dans la question 7) et 0 <— 2 < (car

e" —12tu par convexité de la fonction exponentielle), donc :
G t|q(u)| (k+1)/2 |q(u)| tvi2du 1 k+1 kY| 1 1
|uk(t)|_,|-k/2 _J-k/z e —1 J-k/z w2 In 2 ~In D) _Eln 1+; :

Et par concavité de la fonction In, on a In (l +%j S% et donc, pour tout ke N "

1
u, ()| <—
e ()] < 5
Par comparaison, ceci prouve que la suite (|uk (t)|)k€N* est de limite nulle.

Finalement, la suite (|uk (t)|)k . est décroissante et de limite nulle, donc la série alternée ZLtk (t) vérifie le
€

critere spécial des séries alternées, ce qui permet conclure qu’elle converge est son reste d’ordre n—1 est
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D u (1)

k=n

. 2z . . *
majoré en valeurs absolues par son premier terme, soit pour tout ne N | < |un (t)| et comme on

. . 1 ) . .
vient de voir que |un (t)| < o on obtient bien pour tout ne N
n

(1)

<L
2n

1 . ‘o . N
14. Comme lim 2—=0, le résultat précédent (admis en ¢#=0) permet de conclure a la convergence
n—+e )p

uniforme sur R, de la série de fonctions ZLtk . De plus, d’apres la question 12, u, est continue sur R,
+ oo

pour tout ke N". Ceci permet de conclure que z u, estcontinue sur R, donc en O entre autres.
k=2

Or, pour tout € R,

Zj»(kﬂ)/z t q(u) — lim J-(n+l)/2 tq(u) J»+oo tq(u)

e —1

ZMk(t)— hm ZMk(t)— lim

n—>+oo k/2 u n—>+o0

Et, de la méme facon, zuk 0)= j :m q(u) du et, d’apres la question 9, .[ :m q(u)du: In (2270—1.
k=2 u u
Ainsi :
tim [ 140 g, INCD)
1—»0"Jd1 ™ ] 2
15. Pour tout € R, :
+e 1 q(u) teo e
J L = )
Soitun réel A>1.
. [ du_[ln(l e™)]' =ln-e*)~In(1-¢")—==>—In(1-¢") donc:
1 1_e—ru 1 A—>+oo .
[T du=-In(1-e).
Lo l—e ™
e Par intégration par parties :
A te—lu —tu A A —tu
[ e udu=[uln(1-e")] = [ In(1-e")du
—A — A — ‘
=Aln(l-e¢“)—-In(1-e t)—jl In(I-e ™)du
Or, n(l—-e™) ~ —e™et I lme‘”‘ du converge, donc Lﬂoln (1-e™)du converge.
Et Aln (l—e‘rA)wO par croissances comparées (car Aln(1—e ™) ~ —Ae ™).

Uu—>+oo0
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—u

e e
—udu converge et :

Ainsi, I 1

l1—e

—tu

te fe —t oo —
[ —udu==In(l-e )= | In(i-e")du.

Comme j:mté](ui du converge (d’aprés la question précédente), on en déduit que I :ml

273

e —

te ™
L
converge et :
+°°tq(u) +eo fe
j e — __[ —ru __[ o L J M——I e

:—ln(l—e_')—j:wln(l—e_’”)du—LMlte

Lquu+%ln(l—e")

:—ln(1—e")—jl+wln(l—e_’”)du—Lmlte

I_quI/t +%ln (d-e")

:——ln(l— e)- j _ml_quu [Tima-e)au

273

+teo [

1 reste donc a prouver que j —| u|du=InP(e™").Ona:

tu

r“”ﬁﬁww—ir“”fAuw—zr“””

n

n+l fe —hu
n|
1

. 1o du—Zn[ln(l e‘”‘)L1
[nln (1—e-<"“>’)—nln(l—e-"’)}

[(n+1 DIn(1—e ") —pln (1— e"’)]

+ 3 - - + =
8£M8lM8lM8_

- ([(n+1)1n(1_e—<n+l>r)_nln(l_e_m)]_ln(l_e_(nm,))

n=

—_

Or, pour tout N € N', on a par télescopage :

ﬁ:[(n+1)1n (- ") —nln(l—¢") |=(N+DIn(l—e V") ~In(1-€ ™).

Et comme plus haut, ona (N +1)In(I1-e”""*"")————0, donc :
Z[(n+1)ln(1—e“"+l)’)—nln(l—e‘”’)] =—In(l-¢™").
n=l

—(n+1)t

Ceci implique que la série Zln (1-e ) converge et avec une réindexation, on obtient :

j;“’ re | u Jdu—Z[(rHl)ln(l e —nin(l-e ") |- Zlna ey

=—1n(1—e_’)—21n(1—e_’”) = 21n(1—e-"’)
n=2 n=1
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—u

te — LuJ du=1InP(e”") et finalement, on obtient bien :

N
D’apres la question 5, on a alors I 1
—e

271

e —

+°th<u) _ 1 —t —t teo —tu
L —ldu——zln(l—e )—In P(e )—j1 In(l—e™)du

16. D’apres le résultat précédent, on a pour tout r€ R’ :

=1q(u)
e" —1

N 1 —t + tee —tu
In P(e )——Eln(l—e )‘L a’u—jl In(l—e™)du.

1-e
t

D’apres la question 12, on a Iolln( jdu ——— 1.0Or:

0

J.lln(l_:_m}lu =j;[1n(1—e—”‘)—1nz]du =j(jln(1—e_’”)du—lnt.

—1tu

Ceci veut dire que I (: In(1-e™™)du converge avec :

j;ln(l—e”“)duzlnt—1+ o ().
t—0"

Alors :
tee —tu _[*" —tu 1 —tu
L In(l—e )du_jo In(l—e )du—joln(l—e )du

=.[0+wln(1—e_”‘)du—lnt+l+ o (1)
t—0"
En effectuant le changement de variable v=tu,on a:
teo —tu _ teo -V 1 _1 too -V
jo In(l—e )du_jo In(l-e );dv-;jo In(l—e™*)dv.

2
Et, d’apres la question 10, .[ . In(l-e")dv=-— %, donc :

2

jl+mln(1—e_’”)du:—%—lnt+l+ o () )

t—0"

D’apres la question 14 :

jl+°°tq(”)du=1n(22n)—1+ o) Q)

27,

e —1 -0
Enfin :
In(d-e)=In(t+ o ()=Int+In(1+ o O))=Int+ o 1) 3
t—0* t—0* t—0*

En utilisant (1), (2) et (3) dans la relation au début de la question, on obtient :

2
lnP(e")z—%lnt—ln(zn) +1+2—+lnt—1+ o ().
t

t—0"

Soit :

2
InP(e) ="+ 11, NED
61 2

+ o (D)

t—0"
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C. Développement de P en série entiére
17. On fixe ne N.

N
Pour tout Ne N, ona P, ={(al,...,aN)e NY\> ka, =n}.

k=1

Ona (n,0,...,0)e P, donc:

Pour tout (g, ..., ay )€ P, ettout ke[[1,N] :

1 1. n
0<aq, =;kak S;;lal =;Sn
Donc, (a,,...,a, )€ [[O,n]]N et ainsi :
Py C[[O,n]]

Comme [[O,n]]N est fini (de cardinal (n+1)") et P, C [[O,n]]N, P, est fini et donc p,, existe et comme

P, estnonvide, ona 1< p,  <(n+1)".

N
Pour tout (a,,...,ay)€ P, ,onaa,..,a,,0e N et Zkak +(N+1)x0=n,donc (a,...,ay,0)€ P, ., .
k=1

Ainsi, {(a,, ..., ay,0)\(a,,...,a,)e P, } = P, ., donc:
Card{(a,, ..., ay,0)\(ay.....,ay)€ P,y } < P, yu -

Comme (a,, ..., ay ) (a,,...,ay,0) estbijective de P, , dans {(al,...,aN, 0)\(a,,..,ay)e Pn,N} ,ona:
Card{(a,, ..., ay,0)\(a,....ay)€ P,y } =P, x-

Etainsi, p, , <p,y,,donc:

La suite ( J )NGN* est croissante.

N
* Sin=0,pourtout Ne N ettout (a,,..,a,)e N", ona Zkak =0 siet seulementsi a, =...=a, =0.
k=1

Ainsi, P,N:{(O,...,O)e NN} et p,y=1: la suite (po’N)NeN* est constante A partir du rang

n

1=max(0,1).
e Sin>1,so0it Ne N tel que N>n+1.Posons :

A={(a,....q,,0,..,0)e N"\(a,,...,a,)e P, }.

n,n

Comme plus haut, on a :

n,N

AcP .
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Et pour tout (..., ay )€ P, ,s’il existe pe [n+1,N] telque a, #0,0na a, 21 et donc :

N
ZkakZpal,2p>n.

k=1

N
Ceci est absurde car Zkak =n.
k=1

Ainsi, a, =0 pour tout pe [n+1,N] et (a,,...,a, )€ A. Ceci prouve que :

PyCA.
Finalement, on a :
P =4l

Or, (a,...,a,)~(a,...,a

n’

0,...,0) estbijective de P, dans A, donc :

p,y =CardP,, =CardA=CardP,, =p, .

Ainsi, la suite ( P N) . est constante a partir du rang n=max (n,1).

NeN

Dans les deux cas :

La suite ( P )N - est constante a partir du rang max (n,1).
? €

:|z|N+1 <let:

1 Ew N+1\n Ew n(N+1)
1 N+1 = (Z ) = < :
—Z n=0 n=0

N+1

18. Pourtout ze D ettout Ne N ,ona ‘z

* pd
Pour Ne N donné, posons :

si N+1 divise n

1
VneN, a"’N:{O

sinon
On a alors :
1 <
_ n
VieD, =2 4,57
< n=0
N +oo
, ES
Prouvons par récurrence sur N que pour tout Ne N , on a H - = z P,y pourtout ze D.

n=1 1_Z n=0
e Pourtout ne N,ona P,, ={a,€ N\a, =n}={n}, donc p,, =1.

Comme pour tout z€ D, Z 7" converge, on peut écrire :

+oo

- n __ n_L_ ! 1
DI Y e | et

n=0 n=1 1 —Z

La relation est donc vraie au rang N =1.

N

+o0
e Supposons la relation vraie & un rang Ne N', soit pour tout ze D, Hl —=> p,x2" (ce qui
n=l L= 2 n=0

suppose, entre autres, la convergence de la série Z p, y" pour tout e D).
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Alors :
LAV ool 1 < ; 1
= = Z .
In]ll—z" (gl—z”j(l—zwj (;in j(l—z’v“j
1 _ o n z..° n
Or, on a vu que [ Z(;an, vy etcomme |z| <1, la série Zan, vZ" est absolument convergente.

De plus, on a |z|e D, donc par hypothese de récurrence, la série Z Pun |z|n :z pn,Nz”‘ converge,

donc la série z P, 2 estabsolument convergente.

On peut alors utiliser le produit de Cauchy pour écrire :

H 1_1Zn = (i pn,NZ”j(l_ iw j = (i pn,NZ”j(iunZ"j = i(z pn_k,Nuka” @)

n=1 n=0 n=0 \ k=0

Or, pour tout ne N :
. N+1
_ N+ _
Pn,N+l _{(al""’aN’aN+l)E N \zkak _n}
k=1

<net (a,..,ay)eP,

N+1 n—(N+1)aN+l.N}

={(a1,...,aN,aN+l)e NY"'\(N +1)a

Si on pose A, =[0,n]N(N+DN, autrement dit, A

vs ©st 'ensemble des multiples de N +1 compris

entre O et n, on peut écrire :

P oua =Uk€AM{(al, vy, k)eN""\(a,...,a,)e P_ ,}.
L’application (a,,...,ay. k) (a,,...,ay) est bijective de {(a,, ..., a,.k)e N""\(a,,...,ay)e P}
donc Card{(a,,...,a,,k)e N*"\(a,...,a,)e P_ ,}=CardP,_, , =p, . De plus,

I’union ci-dessus est disjointe, donc :

Pown =Card P, = > Card{(a,...,ay, k)e N""\(a,...,ay)e Py} = D P

ke Ay ke Ay

dans P

n—k,N °

Enfin, avec la suite u définie plus haut, ona ke A, si et seulement si k€ [0,n] et u, =1. Ainsi :

n
Puna = Z Pk v -

k=0
N+1 +00
La relation (1) devient alors H = z P,naZ etdonc larelation est vraie au rang N +1.

n

n=1 1_ Z n=0

. ., e e qe L L s oqe, s . # .
Finalement, la propriété est initialisée et héréditaire, donc vraie pour N € N, soit :

N +oo
. 1
Pour tout Ne N" ettout ze D, [[—==D p.r2"-
0

n=l 1 =2 n=

19. Soient /e N et xe [0,1].

Soit Ne N" telque N >/.Onavuque p,,=p,=1et p,,=p, pour tout N >max (n,1). Alors :

+o0 ¢ +o0
an,zvxn = zpnxn + z pn,an .
n=0 n=0

n=(+1
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Comme tous les termes sont positifs, on peut écrire :
¢ +oo
n n
z pn‘x S z pn,N'x :
n=0 n=0

Donc, d’apres la question précédente, on a :

n=0 n=1 I-x

Ceci est vrai pour tout Ne N tel que N >/, donc on peut faire tendre N vers + oo, et d’apres la question 5,

N
lim (Hl ! nj:P(x) car xe [0,1[ € D, donc, pour tous /e N et xe[0,1] :

N —+oo
n=1

14

z p,x" < P(x)

n=0

! 4
L’inégalité précédente peut se récrire Z D, |z|’Z < P(|z|) pour tout ze€ D. Ainsi, la suite (Z P, |z "j est
n=0 n=0 leN

majorée par P(|z|) et est croissante car la série Z D, |z|’Z est a termes positifs. Ceci permet de conclure que

la série Z D, |z|’Z converge et donc, si R est le rayon de convergence de la série entiere Z p,z",ona R>1.

Par ailleurs, on a vu que pour tous ne N et Ne N, on a P,y 21, donc p 21 et comme le rayon de

convergence de la série entiere Z 7" est1l,ona R<I1.

Finalement :

Le rayon de convergence de la série entiere Z p,z" est R=1.

20. Soit z€ D. Pour tout N e N', les séries Z p,z" et Z p,nxZ convergent.

Onavuque p,,=p,=let p, ,=p,pourtout ISn<N,donc:

+o0 +o0 +oo +oo +oo
anzn_zpn,NZn: Z pnzn_ Z pn,NZn: Z (pn_pn,N)Zn'
n=0 n=0 n=N+l1 n=N+1 n=N+1

D’apres la question 17, a ne N fixé, la suite ( D, N)N .+ est une suite d’entiers naturels croissante et
> €

stationnaire sur p,,donc 0< p, . < p, etainsi, pour tous N € N et neN,ona:
0<p,—p,.y<D,-
Alors, 0< (pn —pn’N)|z|" <p,

converge absolument aussi et on a pour tout Ne N :

+oo +oo
D P2 = Pt
n=0 n=0

Z|" et comme anz" converge absolument, la série Z( pn—pn,N)Z"

+oo

> (p=pun)?

n=N+1

+o0

.
<> (po—pun)ld < D Pz

n=N+1 n=N+1

n

+oo " , . ) +oo n

Comme E D, |z| est le reste d’une série convergente, on a lim E D, z| =0.
N —+o0

n=N+1 n=N+1
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Alors, d’apres le théoreme des gendarmes, on a hm (Z p,2" - z PunZ jz 0, soit :

n=0

Jim (Z Pun? j= ;M"

N
Or, d’apres les questions S et 18, hm (z Pun? j— lim (Hl ! j: P(z) et ainsi, pour tout z€ D :

N —>+oo n

n=l 1= 2

Y. p,2" =P2)
n=0

21. En posant z=e¢'e” avec te R, et Oe[-m,7], on a |z|:e" <1, donc ze D et avec le résultat
précédent :

ipn(etze) _zp —nt m@_P(e—t 19)
n=0

4oo
Alors, pour tout ne N,ona »_ p,e “e"“™° =¢ " P(e”'e") et pour tout B [~ 1, 7] et tout ke N, ona:
k=0
‘Pke_ kit pitk=mB | _ pke—kz
Comme »_ p,e* converge (car ¢ € D), la série de fonctions Y ¢, avec ¢, 10> pe “e"“™° converge

400
normalement, donc uniformément, sur [— n,n] et, comme les ¢, sont continues, Z(])k est continue et :
k=0

J._nn(iq)k (6)jde = ijfnq)k (0)d0 = ij':t pke—krei(k—n)(-) 46 = i pke—er'_"n S0 g
=0 = ~ s

¢ do =" do=2m, donc:

-7

Or,si k#n,ona .[n e g = _
-n itk—n)

Iji;(fii(bk(e):]éie ::27t]7n€_nt.

I
. T
et ”)9} =0etsi k=n, j
-7

+o0 +o0
Par ailleurs, Y 0,(6)=Y_ p,e “e"“™? =" P(e”'¢"), donc :
k=0 k=0

j_ﬂ e ™P(e'e®)d0=2npe".

Avec P(e”")#0,donc P(e”")#0, on peut écrire :

1
Pe™)

Soit, pour tous € R’ et ne N :

t i0
j e—inGP( —t 19)de J. —in® P(e - ) : 27tpi .
- P(e™) e"P(e™")

n

:%j“ o PCe”'e) o
P(e _’)
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D. Controle de P

22. Soient x€[0,1[ et e R.Ona xe D et xe” € D, donc, d’apres la question 3, on peut écrire :

‘ L(x)

L(xe )—L(x) —e e(Loce’e)—L(x))

Etona:

Re(L(xeie)—L(x)) (Z(Xe zij:Re(zi (e ind l)j z); (COS(ne)—l)-

n=1 n=1 n=1

n

Comme pour tout ne N, x—(cos(ne)—l) <0,ona:
n

+oo 1 1
Re(L(xe®)~L(x)) = *(cos (n8) ~1) < XT(cos (0)—1)=—x(1—-cos )
n=1 N
Ainsi, eRe(L(Mi L) < e *"*® et donc on a bien pour tous xe [0,1[ et Be R :
1_ -xie < e—(l—cos(-))x
1—xe

N N
D’apres la question 5, P(x) = lim (Hl ! "j et P(xe”)= Jim (H;j car xe D et xe®e D.

N >+ =l N >+ 4 1_(xele)n

Alors :

N 1
. lim —
P(xe") w(Hl-uew]

= = lim

P(x) lim (Iﬁl 1 j N = +oo ﬁ 1 :N—>+oo
n 1 n

N >+ il 1—x
N
=Jim |11

= lim (
N —+oo

Or, quand x€[0,1[ et 6e R, ona x"€[0,1[ et n6e R pour tout ne N, donc :

Et, par continuité du module :
IN—I 1-x"
1—(xe®)"

n=1

P(xe"®)
P(x)

1 xn in®

—(1=cosn®)x"

Alors, pour tout Ne N :

N n N

I I I-x <I I — (1=cosn®)x =
1 n _in®| — € €

n=1 —Xe n=1

Enfin :
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Et comme les séries géométriques Zx" et Zx"ei”e

i(l—cosn@)x”:i(l—cosne)x":ix"—Re(ix"einejzl1 —Re( ! J
n n=0 n=0 — X

convergent,on a :

= r 1-xe®
Et:
i N — —i(l—cosne)x
PO i [T |<e =
P(x) Nl & H]—x"e"
Soit pour tous x€[0,1] et Be R :
) R
P()Cee) Se 1-x R[l—xee]
P(x)

23. Soient x€[0,1[ et Be R.Ona:

1 1 1 1 1 1—xcosO+ixsin0
——Re 5 |= —Re — = —Re >
1—x 1—xeé' 1-x 1-xcosO—ixsin® ) 1-—x (1—xcose) +x2sin% 0
_ 1 I-xcos© _ I T-xcos®
l-x 1-2xcos®+x’cos’0+x’sin’0 1-x 1-2xcosO+x’
_1-2xcos0+x" —(1-x)(1—xcosB) 1—2xcosO+ x> —1+x+xcosO—x’ cos O
(1-x)1-2xcos 0+ x*) (1-x)1-2x+x" +2x—2xcos0)
x*—x’cosO+x—xcos® (x* + x)(1—cos 0)

T (10 (=2 +2x(1-c0s8))  (1-x)((1=x)" +2x(1-cos0))

1—cosO

Et comme >0 et x> +x>x, on obtient bien pour tous xe [0,1] et Be R :
(1=x)((1=x)* +2x(1—-cos 6))
1 _Re 1 > x(l:cose)
1—x I=xe® ) (1-x) (1= x)” +2x(1-cos 6))
Ceci donne :
0 _
P(xe™) <exp| - x( 2cos 0) .
P(x) (1-x)(1-x)" +2x(1-cos6))

1
On suppose que x = 5

e si(1-x)* <x(1—cos®), alors (1—x)* +2x(1—cos8) <3x(1—cosH) et :

x(1—cos ) S x(1—cos0) _ 1
(1—x)((1—x)2 +2x(1—cos 9)) T (1-x)(3x(1-cos®)) 3(1-x)

1
< exp(— 3(1—x)j'

P(xe™)

P(x)

Et donc
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e si(1-x)*2x(1—cos®), alors (1—x)* +2x(1—cosB) <3(1—x)* et avec x 2% :

x(1-cosB) > x(1-cos9) :x(l—cos6)>1—cos9
(-0 (1=x)+2x(1—-cos®)) (1-03(1-x)" 301-x° 6(1-x"

<ex _l—cosE)
=P 0= )

C 1 )
Ainsi, si XZE ,on abien :

P(xe™)

P(x)

Donc ‘

P(xe®)
P(x)

P(xe®)
P(x)

1
< xp(— 3(1—x)j.

<ex _l—cose
=P T —xy

pour O [-m,w|\{0} et f(O)——

24. Posons f(0)= = cose

Comme la fonction cosinus est paire et développable en série entiere sur R, f est paire et développable en
série entiere sur [— 7, T] (qui est symétrique par rapport a 0), avec pour 8€ [- T, 7] :

D" gon
AU Z(2 +2)' '

—— 0", donc :

La fonction f est alors dérivable sur [- 7, 7] avec f'(6)= zm = z( D" 1
' (2n+2)! o n+l (2n)!

2ef (e) Z( 1)” 1 — z 1 92(2k+l) + 1 1 92(2k+2)
n+l1 (2n)' par 2k+2 2(2k+l)) 2k+3(2(2k+2))!

Z = 0° —2(4k +3)(2k +3) 9>
2k +3 (4k +4)!

Et pour tout ke N, 2(4k +3)(2k +3) 218> 7" >6°, donc 20 '(0) <0, ceci veut dire que f'<0 sur [0,7]

) ) 2 )
et donc que f est décroissante sur cet intervalle. Alors, pour tout O [O,n], f(0) 2 f(mn)=— et par parité,
T

ona f(0) 2% pour tout O [— 7, 7]. Avec 6 >0, ceci donne :
T

Voe[-xn,x], 1—00592%92.
T

. ) _ . . .. | < o
Soit re R, et Be[-m,m]. On a ¢ '€]0,1[ et d’apres la question précédente, si e ’25, c’est-a-dire

I1—-cosO 1
< exXp (— mj < exp(— m] .

t<In2,ona:
P(e—reie)
Pe™")

P(e—t eie)
Pe™")
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" ) ) _ 2
e Par convexité de la fonction exponentielle, on a 0<l—e ' < et donc avec 1—cosez—292, on
o

obtient :
2
_ l—cosH S_l—coses_ 2 e_:_L(t—We)z.
6(l—e')’ 61’ 6m’ 3n’

1—cos© 1 5np)2
< - < -—(r7"8) |.
eXp( 6(1—e”)3j eXp( 37:2( )j

e Toujours avec 0<1—e™' <t,onapour 0€[-7,7|\{0} :

Et donc :
P(e—teie)
Pe™")

P(e—t eie)
P(e™)

1 < 1 1 |9|2/3 < 1 |9|2/3 1 a2 [ A\23
_m—_g 3|e|2/3 =7 3 ¢ = 32 (t |9|) :
Et, donc :
P(e”'e"®) 1 P(e”'e”) (_ 1 znj
P(e—l‘) < p( 3(1_6—1‘)j P(e—t) S p 3n2/3 (t | |)

Finalement, pour tout 7€ |0,In2] et tout 6 [- 7, 7], ona:

(t‘ 3/29)2

2/3
2/3( 7o)

—t 1
P(e™'e®) <,
P(e™")

P(e—teze)

ou
P(e™")

25. D’apres la question précédente, pour tout 7€ ] 0,In2] et tout 6€ [-n, ], ona:

2/3

(r‘3/26)2 2 P( —teze)

Pe™)

W( 3/2‘9‘)
ou

%0 —t 0 1
e P(e'e”) <,
P(e™)

2 .
_izTZG P(e—teze)
e —

Donc, avec —
P(e™")

_ im0 )
["e o P2 g <

— d®, on a pour tout 7€ |0,In2] :
P(e™")

1 ( | ‘)2/3

< j de.

[ [

Par parité, on a :
2 1

o et j

1( -32g

[ amafe Caneafe

3/29 ¢
el do = 2j de.

-3/2

En effectuant le changement de variable u = dans les deux intégrales, on obtient :

L8

1 _ 2 2 2/3 2/3
(t 3/29) —32 3/2‘9‘) _3n u

e d0=nr*[ ¢ du et 2/3(
0 0

de:m”j; e 3de.

2 u2/3 2

. 2 _% 1 T3 1 + o0 —%
Or, par croissances comparées,ona e > = o |—|ete = o0 , donc les intégrales I ., € du
I/t )

Uu—>+oo uz Uu—>+oo

reo
et I E du convergent.
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De plus, pour tout 7€ ]0,In2] :

MZ

oo ——

e 3du

.[ L
0

Alors, pour tout 7€ ]0,In2] :

T
je
-

e 3a,’u<.[

2

Pe—t i0 too M
o P g <[

—<° a6
P(e™)

2/'% 2/'%

00—7

3 du.

-3/2

“f

e 3du<J-

MZ/S

P e—t i0 too M
o P ) SntmL e 3du.

P(e™)

ou ——-do

T
je
-

Finalement, en posant M = max(nj;me_3du,nj;me 3 du |, on obtient pour tout 7€ ]0,In2] :
P 2 P —t 0
I e (e_t) del < M 2
T P(e™)
Ceci permet de conclure que pour tout 7€ ]0,In2] :
. _liz P -t i0
[ Pee)ig= o ()
-n P(e t) t—0*

E. Conclusion

26. D’apres la question 21, pour tous t€ R, et ne N, p =

Ce résultat est vrai quel que soit € R’ choisi a n fixé. Pour tout ne N', on peut donc prendre ¢ =

enn/\/ap(e—n/\/a)

T e—m@ P(e wfon le)

-t i0
e—me P(e € )de

entP(e—r) J'n
2n P(e™")

et:

T
Jon

\/;P(e—ft/\/a) T e_me P(e n6n 19)

Pn= 21T _r P( n/\/a) - 27 _ P( —ﬂ/\/a)
) 1 =Y 32 )" 1
Sin>—|—| ,onate]0,In2] et,avec r’* =| —= | —, le résultat de la question précédente donne :
6\In2 J6) n
x P e—n/«/@eie 1
.[ e in® ( — = )de_ 0 %/4
- P(e m/ 6n) n—>+eol p
D’ou :
P,

D’apres la question 16, on a :

InP(e )=

1

T j In (2m) o
\/a 2 n—+oo
nn-thmer g RCO L
4 4 2 0
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1 1 In(27)
——In6+—Int———
Donc, en posant K =e *+ 2 2 ona:
n b n n 1 n 1
n\/% _E b 5 T E_Zlnn 27 6.2
e '"°P(e ) ~ Ke '%e =Ke '°n
n—+oo
1 )
Et donc ‘f—”z O | —;; |, soit:
n\/z 1 n—+e\ p
e'3nt
2n
"3
e
p,= 0O
n—+oo n




